Existence of solution for a singular elliptic equation with critical Sobolev-Hardy exponents

نویسنده

  • Juan Li
چکیده

Via the variational methods, we prove the existence of a nontrivial solution to a singular semilinear elliptic equation with critical Sobolev-Hardy exponent under certain conditions .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

On Multiple Solutions for a Singular Quasilinear Elliptic System Involving Critical Hardy-sobolev Exponents

This paper is concerned with the existence of nontrivial solutions for a class of degenerate quasilinear elliptic systems involving critical Hardy-Sobolev type exponents. The lack of compactness is overcame by using the Brezis-Nirenberg approach, and the multiplicity result is obtained by combining a version of the Ekeland’s variational principle due to Mizoguchi with the Ambrosetti-Rabinowitz ...

متن کامل

Multiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents

where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...

متن کامل

Multiplicity of solutions for a class of quasi- linear elliptic equation involving the critical Sobolev and Hardy exponents

In this paper, by using concentration-compactness principle and a new version of the symmetric mountain-pass lemma due to Kajikiya (J Funct Anal 225:352–370, 2005), infinitely many small solutions are obtained for a class of quasilinear elliptic equation with singular potential −∆pu− μ |u| p−2u |x|p = |u|p(s)−2u |x|s + λf(x, u), u ∈ H 1,p 0 (Ω). Mathematics Subject Classification (2000). 35J60,...

متن کامل

On elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function

In this paper, we deal with the existence and nonexistence of nonnegative nontrivial weak solutions for a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and a sign-changing function. Some existence results are obtained by splitting the Nerahi manifold and by exploring some properties of the best Hardy-Sobolev constan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005