Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth
نویسندگان
چکیده
We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V-1 s-1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells.
منابع مشابه
Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains.
State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies app...
متن کاملZnO Microcrystals for Light Emitting Diode and Photovoltaic Applications with Integration on Flexible Substrates
We report a new integration approach to produce arrays of ZnO microcrystals for optoelectronic and photovoltaic applications. Demonstrated applications are n-ZnO/p-GaN heterojunction LEDs and photovoltaic cells. The integration process uses an oxygen plasma treatment in combination with a photoresist pattern on Magnesium doped GaN substrates to define a narrow sub-100nm width nucleation region....
متن کاملResponse of Thin Films and Substrate to Micro-Scale Laser Shock Peening
Micro-scale laser shock peening LSP can potentially be applied to metallic structures in microdevices to improve fatigue and reliability performance. Copper thin films on a single-crystal silicon substrate are treated by using LSP and characterized using techniques of X-ray microdiffraction and electron backscatter diffraction (EBSD). Strain field, dislocation density, and microstructure change...
متن کاملEffect of growth time on ZnO thin films prepared by low temperature chemical bath deposition on PS substrate
ZnO thin films were successfully synthesized on a porous silicon (PS) substrate by chemical bathdeposition method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM),and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration(3, 4, 5, and 6 h) on the optical and structural properties of the aligned ZnO nanorods. T...
متن کاملLarge-scale fabrication of nanopatterned sapphire substrates by annealing of patterned Al thin films by soft UV-nanoimprint lithography
Large-scale nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Patterned Al thin films were obtained by soft UV-nanoimprint lithography and reactive ion etching. The soft mold with 550-nm-wide lines separated by 250-nm space was composed of the toluene-diluted polydimethylsiloxane (PDMS) layer supported by the soft PDMS. Patterned Al thin films were subse...
متن کامل