Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy.
نویسندگان
چکیده
As a representative member of the toluene-degrading population in a biofilter for waste gas treatment, Pseudomonas putida was investigated with a 16S rRNA targeting probe. The three-dimensional distribution of P. putida was visualized in the biofilm matrix by scanning confocal laser microscopy, demonstrating that P. putida was present throughout the biofilm. Acridine orange staining revealed a very heterogeneous structure of the fully hydrated biofilm, with cell-free channels extending from the surface into the biofilm. This indicated that toluene may penetrate to deeper layers of the biofilm, and consequently P. putida may be actively degrading toluene in all regions of the biofilm. Furthermore, measurements of growth rate-related parameters for P. putida showed reduced rRNA content and cell size (relative to that in a batch culture), indicating that the P. putida population was not degrading toluene at a maximal rate in the biofilm environment. Assuming that the rRNA content reflected the cellular activity, a lower toluene degradation rate for P. putida present in the biofilm could be estimated. This calculation indicated that P. putida was responsible for a significant part (65%) of the toluene degraded by the entire community.
منابع مشابه
Three-dimensional distribution of GFP-labeled Pseudomonas putida during biofilm formation on solid PAHs assessed by confocal laser scanning microscopy.
Confocal laser scanning microscopy was used to monitor the colonization pattern of the gfp-labeled derivative strain of Pseudomonas putida ATCC 17514 on fluorene and phenanthrene crystals. The in situ experiments showed that P. putida tends to grow directly on phenanthrene, forming a biofilm on accessible crystalline surfaces. On the other hand, no significant biofilm formation was observed in ...
متن کاملVisualization of active biomass distribution in a BGAC fluidized bed reactor using GFP tagged Pseudomonas putida F1.
A favorable microenvironment for biofilm growth on GAC particles was shown using green fluorescent protein (GFP) as a marker for a phenol degrading bacterium, Pseudomonas putida F1. The dispersion of P. putida F1 in a biofilm covering granulated activated carbon (GAC) particles was monitored and compared to a biofilm on non-activated granular carbon particles. Laser scanning confocal microscopy...
متن کاملMicroscopy and Fluorescence In-Situ Hybridization mini-study of four contaminant-degrading enrichment cultures and Biofilm formation study of the KB-1 and T3L cultures using confocal microscopy
Four environmentally-relevant and contaminant-degrading enrichment cultures (KB-1, ACT 3, T3L, and ORCH4) from the Edward’s Laboratory at the University of Toronto were studied via traditional microscopy, laser scanning confocal microscopy, and scanning electron microscopy. Also, general bacteria and archaea probes were tested for all these cultures to determine their suitability for continuous...
متن کاملSpatial Arrangement of Legionella Colonies in Intact Biofilms from a Model Cooling Water System
There is disagreement among microbiologists about whether Legionella requires a protozoan host in order to replicate. This research sought to determine where in biofilm Legionellae are found and whether all biofilm associated Legionella would be located within protozoan hosts. While it is accepted that Legionella colonizes biofilm, its life cycle and nutritional fastidiousness suggest that Legi...
متن کاملWst 47.5 B2.6
Confocal laser scanning microscopy was used to monitor the colonization pattern of the gfplabeled derivative strain of Pseudomonas putida ATCC 17514 on fluorene and phenanthrene crystals. The in situ experiments showed that P. putida tends to grow directly on phenanthrene, forming a biofilm on accessible crystalline surfaces. On the other hand, no significant biofilm formation was observed in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 62 12 شماره
صفحات -
تاریخ انتشار 1996