Hypertrophy of cerebral arterioles in mice deficient in expression of the gene for CuZn superoxide dismutase.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Reactive oxygen species are believed to be an important determinant of vascular growth. We examined effects of genetic deficiency of copper-zinc superoxide dismutase (CuZnSOD; SOD1) on structure and function of cerebral arterioles. METHODS Systemic arterial pressure (SAP) and cross-sectional area of the vessel wall (CSA) and superoxide (O2-) levels (relative fluorescence of ethidium [ETH]) were examined in maximally dilated cerebral arterioles in mice with targeted disruption of one (+/-) or both (-/-) genes encoding CuZnSOD. Wild-type littermates served as controls. Vasodilator responses were tested in separate groups of mice. RESULTS CSA and ETH were significantly increased (P<0.05) in both CuZnSOD+/- and CuZnSOD-/- mice (CSA=435+/-24 and 541+/-48 microm2; ETH=18+/-1 and 34+/-2%) compared with wild-type mice (CSA=327+/-28 microm2; ETH=6%). Furthermore, the increases in CSA and ETH relative to wild-type mice were significantly greater (P<0.05) in CuZnSOD-/- mice than in CuZnSOD+/- mice (CSA=108 versus 214 microm2; ETH=12 versus 28%). In addition, dilatation of cerebral arterioles in response to acetylcholine, but not nitroprusside, was reduced by approximately 25% in CuZnSOD+/- (P<0.075) and 50% in CuZnSOD-/- mice (P<0.05) compared with wild-type mice. CONCLUSIONS Cerebral arterioles in CuZnSOD+/- and CuZnSOD-/- mice undergo marked hypertrophy. These findings provide the first direct evidence in any blood vessel that CuZnSOD normally inhibits vascular hypertrophy suggesting that CuZnSOD plays a major role in regulation of cerebral vascular growth. The findings also suggest a gene dosing effect of CuZnSOD for increases in O2-, induction of cerebral vascular hypertrophy and impaired endothelium-dependent dilatation.
منابع مشابه
Superoxide Dismutase Hypertrophy of Cerebral Arterioles in Mice Deficient in Expression of the Gene for CuZn
Superoxide Dismutase Hypertrophy of Cerebral Arterioles in Mice Deficient in Expression of the Gene for CuZn Print ISSN: 0039-2499. Online ISSN: 1524-4628 Copyright © 2006 American Heart Association, Inc. All rights reserved. is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Stroke doi: 10.1161/01.STR.0000227236.84546.5a 2006;37:1850-1855; originally publi...
متن کاملP16: Effect of Hesperetin Nanoparticles on Cerebral Gene Expression and Activity of Catalase and Superoxide Dismutase in Alzheimer’s Rat
Hesperetin (Hst) is a well-known bioflavonoid, has low bioavailability. Hesperetin nanoparticles (Nano-Hst) enhance its bioavailability. Nano-Hst were not explored for their potential therapeutic activities in Alzheimer’s disease (AD). Hence, the present study was performed to evaluate the protective effect of Nano-Hst in comparison to free Hesperetin on against intracerebroventricular in...
متن کاملTransgenic CuZn-superoxide dismutase inhibits NO synthase induction in experimental subarachnoid hemorrhage.
BACKGROUND AND PURPOSE The expression of inducible NO synthase (iNOS) after experimental subarachnoid hemorrhage (SAH) has been postulated to play a critical role in the pathogenesis of SAH and subsequent cerebral vasospasm. The inhibitory effect of CuZn-superoxide dismutase (CuZn-SOD) on the induction of iNOS after SAH was examined by using transgenic mice overexpressing CuZn-SOD. METHODS SO...
متن کاملDeficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia
There is an emerging consensus that hyperhomocysteinemia is an independent risk factor for cerebral vascular disease and that homocysteine-lowering therapy protects from ischemic stroke. However, the mechanisms by which hyperhomocysteinemia produces abnormalities of cerebral vascular structure and function remain largely undefined. Our objective in this study was to define the mechanistic role ...
متن کاملEnhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 37 7 شماره
صفحات -
تاریخ انتشار 2006