Approximate Solution for Nonlinear Oscillation of a Mass Attached to a Stretched Elastic Wire by Optimal Homotopy Asymptotic Method
نویسندگان
چکیده
A precise solution of a mathematical model of a mass connected to an elastic wire is being given in this work. The Optimal Homotopy Asymptotic Method is applied to solve this conventional model. Also, comparison with other numerical methodologies and its exact solution will be given for distinct amplitude of oscillations and compliance can be observed. Results suggest that this technique is useful for solving non-linear oscillatory system quite easily. The solution procedure confirm that this method can be easily extended to other kinds of non-linear oscillators.
منابع مشابه
A piecewise variational iteration method for treating a nonlinear oscillator of a mass attached to a stretched elastic wire
In this paper,we introduce a piecewise variational iterationmethod for treating a nonlinear oscillator of a mass attached to a stretched elastic wire. For the nonlinear oscillator, the present method can produce a good approximation to the exact solution in a very large region, while the standard variational iteration method (VIM) gives a good approximation only in a small region. The numerical...
متن کاملThe comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation
In recent years, numerous approaches have been applied for finding the solutions of functional equations. One of them is the optimal homotopy asymptotic method. In current paper, this method has been applied for obtaining the approximate solution of Fisher equation. The reliability of the method will be shown by solving some examples of various kinds and comparing the obtained outcomes with the ...
متن کاملAnalytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method
The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...
متن کاملA study of a Stefan problem governed with space–time fractional derivatives
This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...
متن کاملMODIFICATION OF THE OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR LANE-EMDEN TYPE EQUATIONS
In this paper, modication of the optimal homotopy asymptotic method (MOHAM) is appliedupon singular initial value Lane-Emden type equations and results are compared with the available exactsolutions. The modied algorithm give the exact solution for dierential equations by using one iterationonly.
متن کامل