Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency).
نویسندگان
چکیده
A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignin in angiosperms (poplar, Arabidopsis, tobacco), has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-methoxyphenyl)-1,2,2-tris(ethylthio)ethane]. Its truncated side chain and distinctive oxidation state suggest that it derives from ferulic acid that has undergone bis-8-O-4 (cross) coupling during lignification, as validated by model studies. A diagnostic contour for such structures is found in two-dimensional (13)C-(1)H correlated (HSQC) NMR spectra of lignins isolated from cinnamoyl CoA reductase (CCR)-deficient poplar. As low levels of the marker are also released from normal (i.e. non-transgenic) plants in which ferulic acid may be present during lignification, notably in grasses, the marker is only an indicator for CCR deficiency in general, but is a reliable marker in woody angiosperms such as poplar. Its derivation, together with evidence for 4-O-etherified ferulic acid, strongly implies that ferulic acid is incorporated into angiosperm lignins. Its endwise radical coupling reactions suggest that ferulic acid should be considered an authentic lignin precursor. Moreover, ferulic acid incorporation provides a new mechanism for producing branch points in the polymer. The findings sharply contradict those reported in a recent study on CCR-deficient Arabidopsis.
منابع مشابه
Identification of the Structure and Origin of a Thioacidolysis Marker Compound for Ferulic Acid Incorporation into Angiosperm Lignins (and a pseudo-Marker Compound for Cinnamoyl-CoA Reductase Deficiency)
S1. Comment: Tyramine Ferulates in Tobacco Lignins Tobacco lignins were found to have a substantial component derived from tyramine ferulate. The levels of this component appeared elevated in certain CCRand CAD-deficient transgenics (Ralph et al., 1998). Although we were careful to note that tyramine ferulate is a wellknown wound-response product in tobacco, we remained convinced by the correla...
متن کاملDownregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure.
Cinnamoyl-CoA reductase (CCR) catalyzes the penultimate step in monolignol biosynthesis. We show that downregulation of CCR in transgenic poplar (Populus tremula x Populus alba) was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem. Thioacidolysis, nuclear magnetic resonance (NMR), immunocytochemistry of lignin epitopes, and oligol...
متن کاملFerulic acid, a phenolic compound with therapeutic effects in neuropsychiatric disorders, stimulates the production of nerve growth factor and endocannabinoids in rat brain
Introduction: Ferulic acid, a phenolic phytochemical with neuroprotective, anti-inflammatory, and antioxidant properties, has shown promising antidepressant-like effects in behavioral studies; however, its mechanism(s) of action have not been fully understood. Based on the contribution of nerve growth factor (NGF) and endocannabinoid signaling (eCBs) to the emotional or antidepressant activ...
متن کاملThe 1.8 A resolution structure of hydroxycinnamoyl-coenzyme A hydratase-lyase (HCHL) from Pseudomonas fluorescens, an enzyme that catalyses the transformation of feruloyl-coenzyme A to vanillin.
The crystal structure of hydroxycinnamoyl-CoA hydratase-lyase (HCHL) from Pseudomonas fluorescens AN103 has been solved to 1.8 A resolution. HCHL is a member of the crotonase superfamily and catalyses the hydration of the acyl-CoA thioester of ferulic acid [3-(4-hydroxy-3-methoxy-phenyl)prop-2-enoic acid] and the subsequent retro-aldol cleavage of the hydrated intermediate to yield vanillin (4-...
متن کاملSuppression of CINNAMOYL-CoA REDUCTASE increases the level of monolignol ferulates incorporated into maize lignins
BACKGROUND The cell wall polymer lignin provides structural support and rigidity to plant cell walls, and therefore to the plant body. However, the recalcitrance associated with lignin impedes the extraction of polysaccharides from the cell wall to make plant-based biofuels and biomaterials. The cell wall digestibility can be improved by introducing labile ester bonds into the lignin backbone t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2008