Aye-aye population genomic analyses highlight an important center of endemism in northern Madagascar.
نویسندگان
چکیده
We performed a population genomics study of the aye-aye, a highly specialized nocturnal lemur from Madagascar. Aye-ayes have low population densities and extensive range requirements that could make this flagship species particularly susceptible to extinction. Therefore, knowledge of genetic diversity and differentiation among aye-aye populations is critical for conservation planning. Such information may also advance our general understanding of Malagasy biogeography, as aye-ayes have the largest species distribution of any lemur. We generated and analyzed whole-genome sequence data for 12 aye-ayes from three regions of Madagascar (North, West, and East). We found that the North population is genetically distinct, with strong differentiation from other aye-ayes over relatively short geographic distances. For comparison, the average FST value between the North and East aye-aye populations--separated by only 248 km--is over 2.1-times greater than that observed between human Africans and Europeans. This finding is consistent with prior watershed- and climate-based hypotheses of a center of endemism in northern Madagascar. Taken together, these results suggest a strong and long-term biogeographical barrier to gene flow. Thus, the specific attention that should be directed toward preserving large, contiguous aye-aye habitats in northern Madagascar may also benefit the conservation of other distinct taxonomic units. To help facilitate future ecological- and conservation-motivated population genomic analyses by noncomputational biologists, the analytical toolkit used in this study is available on the Galaxy Web site.
منابع مشابه
Comparing aye-aye (Daubentonia madagascariensis) presence and distribution between degraded and non-degraded forest within Ranomafana National Park, Madagascar.
The aye-aye is considered the most widely distributed lemur in Madagascar; however, the effect of forest quality on aye-aye abundance is unknown. We compared aye-aye presence across degraded and non-degraded forest at Ranomafana National Park, Madagascar. We used secondary signs (feeding sites, high activity sites) as indirect cues of aye-aye presence and Canarium trees as an indicator of resou...
متن کاملAn endogenous foamy virus in the aye-aye (Daubentonia madagascariensis).
We report the discovery and analysis of an endogenous foamy virus (PSFVaye) within the genome of the aye-aye (Daubentonia madagascariensis), a strepsirrhine primate from Madagascar. Phylogenetic analyses indicate that PSFVaye is divergent from all known simian foamy viruses, suggesting an association between foamy viruses and primates since the haplorrhine-strepsirrhine split. The discovery of ...
متن کاملA Genome Sequence Resource for the Aye-Aye (Daubentonia madagascariensis), a Nocturnal Lemur from Madagascar
We present a high-coverage draft genome assembly of the aye-aye (Daubentonia madagascariensis), a highly unusual nocturnal primate from Madagascar. Our assembly totals ~3.0 billion bp (3.0 Gb), roughly the size of the human genome, comprised of ~2.6 million scaffolds (N50 scaffold size = 13,597 bp) based on short paired-end sequencing reads. We compared the aye-aye genome sequence data with fou...
متن کاملDiurnal Evidence of a Nocturnal Feeder: Using Feeding Traces to Understand Aye-ayes’ Feeding Strategy in Ranomafana National Park, Madagascar
OF THE THESIS Diurnal Evidence of a Nocturnal Feeder: Using Feeding Traces to Understand Aye-Ayes’ Feeding Strategy in Ranomafana National Park, Madagascar by Timothy Mikhail Sefczek Master of Arts in Anthropology San Diego State University, 2009 This thesis explores the feeding strategy of aye-ayes (Daubentonia madagascariensis) before and during the pronounced fruiting season of Canarium sp. ...
متن کاملSignatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate.
While color vision perception is thought to be adaptively correlated with foraging efficiency for diurnal mammals, those that forage exclusively at night may not need color vision nor have the capacity for it. Indeed, although the basic condition for mammals is dichromacy, diverse nocturnal mammals have only monochromatic vision, resulting from functional loss of the short-wavelength sensitive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 15 شماره
صفحات -
تاریخ انتشار 2013