SERCA1a can functionally substitute for SERCA2a in the heart.
نویسندگان
چکیده
We recently generated a transgenic (TG) mouse model in which the fast-twitch skeletal muscle sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA1a) is overexpressed in the heart. Ectopic overexpression of SERCA1a results in remodeling of the cardiac SR containing 80% SERCA1a and 20% endogenous SERCA2a with an ∼2.5-fold increase in the total amount of SERCA protein (E. Loukianov et al. Circ. Res. 83: 889-897, 1998). We have analyzed the Ca2+ transport properties of membranes from SERCA1a TG hearts in comparison to control hearts. Our data show that the maximal velocity of SR Ca2+ transport was significantly increased (∼1.9-fold) in TG hearts, whereas the apparent affinity of the SERCA pump for Ca2+ was not changed. Addition of phospholamban antibody in the Ca2+ uptake assays increased the apparent affinity for Ca2+ to the same extent in TG and non-TG (NTG) hearts, suggesting that phospholamban regulates the SERCA1a pump in TG hearts. Analysis of SERCA enzymatic properties in TG hearts revealed that the SERCA pump affinity for ATP, the Hill coefficient, the pH dependence of Ca2+ uptake, and the effect of acidic pH on Ca2+ transport were similar to those of NTG hearts. Interestingly, the rate constant of phosphoenzyme decay (turnover rate of SERCA enzyme) was also very similar between TG and NTG hearts. Together these findings suggest that 1) the SERCA1a pump can functionally substitute for SERCA2a and is regulated by endogenous phospholamban in the heart and 2) SERCA1a exhibits several enzymatic properties similar to those of SERCA2a when expressed in a cardiac setting.
منابع مشابه
Sarcoplasmic Reticulum Ca ATPase (SERCA) 1a Structurally Substitutes for SERCA2a in the Cardiac Sarcoplasmic Reticulum and Increases Cardiac Ca Handling Capacity
Ectopic expression of the sarcoplasmic reticulum (SR) Ca ATPase (SERCA) 1a pump in the mouse heart results in a 2.5-fold increase in total SERCA pump level. SERCA1a hearts show increased rates of contraction/relaxation and enhanced Ca transients; however, the cellular mechanisms underlying altered Ca handling in SERCA1a transgenic (TG) hearts are unknown. In this study, using confocal microscop...
متن کاملSarcoplasmic reticulum Ca(2+) atpase (SERCA) 1a structurally substitutes for SERCA2a in the cardiac sarcoplasmic reticulum and increases cardiac Ca(2+) handling capacity.
Ectopic expression of the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA) 1a pump in the mouse heart results in a 2.5-fold increase in total SERCA pump level. SERCA1a hearts show increased rates of contraction/relaxation and enhanced Ca(2+) transients; however, the cellular mechanisms underlying altered Ca(2+) handling in SERCA1a transgenic (TG) hearts are unknown. In this study, using confoc...
متن کاملEnhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase.
In this study, we investigated whether the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+ transport pump (SERCA1a) can functionally substitute the cardiac SERCA2a isoform and how its overexpression affects cardiac contractility. For this purpose, we generated transgenic (TG) mice that specifically overexpress SERCA1a in the heart, using the cardiac-specific alpha-myosin heavy cha...
متن کاملEnhanced Myocardial Contractility and Increased Ca Transport Function in Transgenic Hearts Expressing the Fast-Twitch Skeletal Muscle Sarcoplasmic Reticulum Ca-ATPase
In this study, we investigated whether the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca transport pump (SERCA1a) can functionally substitute the cardiac SERCA2a isoform and how its overexpression affects cardiac contractility. For this purpose, we generated transgenic (TG) mice that specifically overexpress SERCA1a in the heart, using the cardiac-specific a-myosin heavy chain pro...
متن کاملExpression of SERCA isoform with faster Ca2+ transport properties improves postischemic cardiac function and Ca2+ handling and decreases myocardial infarction.
Myocardial ischemia-reperfusion (I/R) injury is associated with contractile dysfunction, arrhythmias, and myocyte death. Intracellular Ca(2+) overload with reduced activity of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is a critical mechanism of this injury. Although upregulation of SERCA function is well documented to improve postischemic cardiac function, there are conflicting reports...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 276 1 شماره
صفحات -
تاریخ انتشار 1999