Se p 20 09 ANALYSIS OF FOURIER TRANSFORM VALUATION FORMULAS AND APPLICATIONS
نویسنده
چکیده
The aim of this article is to provide a systematic analysis of the conditions such that Fourier transform valuation formulas are valid in a general framework; i.e. when the option has an arbitrary payoff function and depends on the path of the asset price process. An interplay between the conditions on the payoff function and the process arises naturally. We also extend these results to the multi-dimensional case, and discuss the calculation of Greeks by Fourier transform methods. As an application, we price options on the minimum of two assets in Lévy and stochastic volatility models.
منابع مشابه
Analysis of Fourier Transform Valuation Formulas and Applications
The aim of this article is to provide a systematic analysis of the conditions such that Fourier transform valuation formulas are valid in a general framework; i.e. when the option has an arbitrary payoff function and depends on the path of the asset price process. An interplay between the conditions on the payoff function and the process arises naturally. We also extend these results to the mul...
متن کاملCubature formulas and discrete fourier transform on compact manifolds
Analysis on two dimensional surfaces and in particular on the sphere S found many applications in computerized tomography, statistics, signal analysis, seismology, weather prediction, and computer vision. During last years many problems of classical harmonic analysis were developed for functions on manifolds and especially for functions on spheres: splines, interpolation, approximation, differe...
متن کاملWindowed linear canonical transform and its applications
In this paper, we generalize the windowed Fourier transform to the windowed linear canonical transform by substituting the Fourier transform kernel with the linear canonical transform kernel in the windowed Fourier transform definition. It offers local contents, enjoys high resolution, and eliminates cross terms. Some useful properties of the windowed linear canonical transform are derived. Tho...
متن کاملHarmonic Analysis on Finite Abelian Groups
We give a discussion of harmonic analysis on finite abelian groups, emphasizing various ways in which the structure of the group is encoded on various spaces of functions, ways in which the Fourier transform detects and preserves these structures. We discuss the major tools, like convolutions and Fourier transforms, along with some fundamental theorems, like the Plancheral, Parseval, Fourier in...
متن کاملA Methodology for Generating Efficient Disk-Based Algorithms from Tensor Product Formulas
In this paper, we address the issue of automatic generation of disk-based algorithms from tensor product formulas. Disk-based algorithms are required in scientiic applications which work with large data sets that do not t entirely into main memory. Tensor products have been used for designing and implementing block recursive algorithms on shared-memory, vector and distributed-memory multiproces...
متن کامل