Energy-filtered cold electron transport at room temperature

نویسندگان

  • Pradeep Bhadrachalam
  • Ramkumar Subramanian
  • Vishva Ray
  • Liang-Chieh Ma
  • Weichao Wang
  • Jiyoung Kim
  • Kyeongjae Cho
  • Seong Jin Koh
چکیده

Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon nanotube single-electron transistors at room temperature.

Room-temperature single-electron transistors are realized within individual metallic single-wall carbon nanotube molecules. The devices feature a short (down to approximately 20 nanometers) nanotube section that is created by inducing local barriers into the tube with an atomic force microscope. Coulomb charging is observed at room temperature, with an addition energy of 120 millielectron volts...

متن کامل

Electron Transport in Single-Walled Carbon Nanotubes

Electron Transport in Single-Walled Carbon Nanotubes Meninder S. Purewal We present electron transport experiments on single walled carbon nanotubes (SWNTs). By measuring the linear scaling of resistance with length, we determine an unusually long mean free path of Lm ∼1 μm at room temperature. From the temperature dependence of the mean free path for over 10 samples we show that inelastic scat...

متن کامل

Room-temperature ballistic transport in III-nitride heterostructures.

Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the sh...

متن کامل

Identification of Trap States in Perovskite Solar Cells.

Thermally stimulated current (TSC) measurements are used to characterize electronic trap states in methylammonium lead iodide perovsite solar cells. Several TSC peaks were observed over the temperature range from 20 K to room temperature. To elucidate the origins of these peaks, devices with various organic charge transport layers and devices without transport layers were tested. Two peaks appe...

متن کامل

Experimental investigation of electron transport properties of gallium nitride nanowires

We report transport properties of gallium nitride GaN nanowires grown using direct reaction of ammonia and gallium vapor. Reliable devices, such as four-terminal resistivity measuring structures and field-effect transistors, were realized by dielectrophoretically aligning the nanowires on an oxidized silicon substrate and subsequently applying standard microfabrication techniques. Room-temperat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014