In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes
نویسندگان
چکیده
RATIONALE Repolarization alternans (RA) are associated with arrhythmogenesis. Animal studies have revealed potential mechanisms, but human-focused studies are needed. RA generation and frequency dependence may be determined by cell-to-cell variability in protein expression, which is regulated by genetic and external factors. OBJECTIVE To characterize in vivo RA in human and to investigate in silico using human models, the ionic mechanisms underlying the frequency-dependent differences in RA behavior identified in vivo. METHODS AND RESULTS In vivo electrograms were acquired at 240 sites covering the epicardium of 41 patients at 6 cycle lengths (600-350 ms). In silico investigations were conducted using a population of biophysically detailed human models incorporating variability in protein expression and calibrated using in vivo recordings. Both in silico and in vivo, 2 types of RA were identified, with Fork- and Eye-type restitution curves, based on RA persistence or disappearance, respectively, at fast pacing rates. In silico simulations show that RA are strongly correlated with fluctuations in sarcoplasmic reticulum calcium, because of strong release and weak reuptake. Large L-type calcium current conductance is responsible for RA disappearance at fast frequencies in Eye-type (30% larger in Eye-type versus Fork-type; P<0.01), because of sarcoplasmic reticulum Ca(2+) ATPase pump potentiation caused by frequency-induced increase in intracellular calcium. Large Na(+)/Ca(2+) exchanger current is the main driver in translating Ca(2+) fluctuations into RA. CONCLUSIONS In human in vivo and in silico, 2 types of RA are identified, with RA persistence/disappearance as frequency increases. In silico, L-type calcium current and Na(+)/Ca(2+) exchanger current determine RA human cell-to-cell differences through intracellular and sarcoplasmic reticulum calcium regulation.
منابع مشابه
β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis
The border zone (BZ) of the viable myocardium adjacent to an infarct undergoes extensive autonomic and electrical remodeling and is prone to repolarization alternans-induced cardiac arrhythmias. BZ remodeling processes may promote or inhibit Ca2+ and/or repolarization alternans and may differentially affect ventricular arrhythmogenesis. Here, we used a detailed computational model of the canine...
متن کاملT-wave alternans and the susceptibility to ventricular arrhythmias.
T-wave alternans (TWA) reflects beat-to-beat fluctuations in the electrocardiographic T-wave, and is associated with dispersion of repolarization and the mechanisms for sudden cardiac arrest (SCA). This review examines the bench-to-bedside literature that, over decades, has linked alternans of repolarization in cellular, whole-heart, and human studies with spatial dispersion of repolarization, ...
متن کاملIn Silico Investigation into Cellular Mechanisms of Cardiac Alternans in Myocardial Ischemia
Myocardial ischemia is associated with pathophysiological conditions such as hyperkalemia, acidosis, and hypoxia. These physiological disorders may lead to changes on the functions of ionic channels, which in turn form the basis for cardiac alternans. In this paper, we investigated the roles of hyperkalemia and calcium handling components played in the genesis of alternans in ischemia at the ce...
متن کاملMechanism linking T-wave alternans to the genesis of cardiac fibrillation.
BACKGROUND Although T-wave alternans has been closely associated with vulnerability to ventricular arrhythmias, the cellular processes underlying T-wave alternans and their role, if any, in the mechanism of reentry remain unclear. METHODS AND RESULTS -T-wave alternans on the surface ECG was elicited in 8 Langendorff-perfused guinea pig hearts during fixed-rate pacing while action potentials w...
متن کاملBasic Science for Clinicians Role of Substrate and Triggers in the Genesis of Cardiac Alternans, From the Myocyte to the Whole Heart Implications for Therapy
Electrocardiographic alternans, a phenomenon of beat-tobeat oscillation in electrocardiographic (ECG) waveforms, was first described by Hering in 1908.1 Much of the interest in the alternans phenomenon has focused on alternans during the repolarization phase of the cardiac action potential (AP), also known as repolarization alternans (RA). More specifically, RA has been associated with an incre...
متن کامل