GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies.
نویسندگان
چکیده
The Pseudomonas aeruginosa enzyme GDP-mannose dehydrogenase (GMD) is encoded by the algD gene, and previous genetic studies have indicated that it is a key regulatory and committal step in the biosynthesis of the polysaccharide alginate. In the present study the algD gene has been cloned into the broad-host-range expression vector pMMB66EH and GMD overexpressed in mucoid and genetically-related non-mucoid strains of P. aeruginosa. The metabolic approach of P. J. Tatnell, N. J. Russell & P. Gacesa (1993), J Gen Microbiol 139, 119-127, has been used to investigate the subsequent effect of GMD overexpression on the intracellular concentrations of the key metabolites GDP-mannose and GDP-mannuronate, which have been related to GMD activity and total alginate production. The overexpression of algD in mucoid and non-mucoid strains resulted in elevated GMD activities compared to wild-type strains; there was a concomitant reduction in GDP-mannose concentrations and greatly increased GDP-mannuronate concentrations. However, significantly, alginate biosynthesis was detected only in mucoid strains and GMD overexpression resulted in only a marginal increase in exopolysaccharide production. The GDP-mannuronate concentrations in mucoid strains which overexpressed GMD were always significantly greater than those of GDP-mannose, indicating that GMD was no longer the major kinetic control point in the biosynthesis of alginate by these genetically-manipulated strains. The small but significant increase in alginate production by such strains together with the increased GDP-mannuronate concentrations is interpreted as meaning that a later enzyme of the alginate pathway has become the major kinetic control point and now determines the extent of alginate production. This study has provided direct metabolic evidence that GMD is the key regulatory enzyme in alginate biosynthesis in P. aeruginosa.
منابع مشابه
Crystal structure of GDP-mannose dehydrogenase: a key enzyme of alginate biosynthesis in P. aeruginosa.
The enzyme GMD from Pseudomonas aeruginosa catalyzes the committed step in the synthesis of the exopolysaccharide alginate. Alginate is a major component of P. aeruginosa biofilms that protect the bacteria from the host immune response and antibiotic therapy. The 1.55 A crystal structure of GMD in ternary complex with its cofactor NAD(H) and product GDP-mannuronic acid reveals that the enzyme f...
متن کاملPurification and Characterization of Alginate Lyase from Mucoid Pseudomonas aeruginosa Strain 214
Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of infections in compromised patients. The ability of Pseudomonas aeruginosa to produce chronic infection is based in part on its ability to biosynthesis of biofilm, and alginate is the major polysaccharide in the synthesized biofilm. So alginate degradation is very essential in the dispersion of Pseudomonas aeruginosa bi...
متن کاملOxygen-dependent alginate synthesis and enzymes in Pseudomonas aeruginosa.
Alginate production by the highly alginate-producing Pseudomonas aeruginosa 8821M was maximal at a dissolved oxygen tension (DOT) of 5% of air saturation. Lower DOT limited growth and alginate synthesis. At higher DOT values up to 70% of air saturation, the specific alginate production rate decreased. Nevertheless, the molecular mass of the alginate increased at higher aerations, as indicated b...
متن کاملBiochemical and computational study of an alginate lyase produced by Pseudomonas aeruginosa strain S21
Objective(s): Alginates play a key role in mucoid Pseudomonas aeruginosa colonization, biofilm formation, and driving out of cationic antibiotics. P. aeruginosa alginate lyase (AlgL) is a periplasmic enzyme that is necessary for alginate synthesis and secretion. It also has a role in depolymerization of alginates. Using AlgLs in cystic fibrosis patients along with anti...
متن کاملRegulation of nucleoside diphosphate kinase and secretable virulence factors in Pseudomonas aeruginosa: roles of algR2 and algH.
Alginate is an important virulence factor for Pseudomonas aeruginosa during infection of the lungs of cystic fibrosis patients. The genes encoding enzymes for alginate production by P. aeruginosa are normally silent. They are activated in response to several environmental conditions, including high osmolarity, exposure to ethanol, or long-term growth under conditions of nutrient deprivation. Se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 140 ( Pt 7) شماره
صفحات -
تاریخ انتشار 1994