The nil Hecke ring and cohomology of G/P for a Kac-Moody group G.
نویسندگان
چکیده
Let G be the group with Borel subgroup B, associated to a Kac-Moody Lie algebra [unk] (with Weyl group W and Cartan subalgebra [unk]). Then H(*)(G/B) has, among others, four distinguished structures (i) an algebra structure, (ii) a distinguished basis, given by the Schubert cells, (iii) a module for W, and (iv) a module for Hecke-type operators A(w), for w [unk] W. We construct a ring R, which we refer to as the nil Hecke ring, which is very simply and explicitly defined as a functor of W together with the W-module [unk] alone and such that all these four structures on H(*)(G/B) arise naturally from the ring R.
منابع مشابه
The two parameter quantum groups $U_{r,s}(mathfrak{g})$ associated to generalized Kac-Moody algebra and their equitable presentation
We construct a family of two parameter quantum grou-\ps $U_{r,s}(mathfrak{g})$ associated with a generalized Kac-Moody algebra corresponding to symmetrizable admissible Borcherds Cartan matrix. We also construct the $textbf{A}$-form $U_{textbf{A}}$ and the classical limit of $U_{r,s}(mathfrak{g})$. Furthermore, we display the equitable presentation for a subalgebra $U_{r...
متن کاملCombinatorial integers (m, nj) and Schubert calculus in the integral cohomology ring of infinite smooth flag manifolds
Kumar described the Schubert classes which are the dual to the closures of the Bruhat cells in the flag varieties of the Kac-Moody groups associated to the infinite dimensional KacMoody algebras [17]. These classes are indexed by affine Weyl groups and can be chosen as elements of integral cohomologies of the homogeneous space L̂polGC/B̂ for any compact simply connected semisimple Lie groupG. Lat...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملAffine Hecke algebras and the Schubert calculus
Using a combinatorial approach which avoids geometry, this paper studies the ring structure of KT (G/B), the T -equivariant K-theory of the (generalized) flag variety G/B. Here, the data G ⊇ B ⊇ T is a complex reductive algebraic group (or symmetrizable Kac-Moody group)G, a Borel subgroup B, and a maximal torus T , and KT (G/B) is the Grothendieck group of T -equivariant coherent sheaves on G/B...
متن کاملComputation of generalized equivariant cohomologies of Kac-Moody flag varieties
Abstract. In 1998, Goresky, Kottwitz, and MacPherson showed that for certain projective varieties X equipped with an algebraic action of a complex torus T , the equivariant cohomology ring H∗ T (X) can be described by combinatorial data obtained from its orbit decomposition. In this paper, we generalize their theorem in three different ways. First, our group G need not be a torus. Second, our s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 83 6 شماره
صفحات -
تاریخ انتشار 1986