Historical warming reduced due to enhanced land carbon uptake.

نویسندگان

  • Elena Shevliakova
  • Ronald J Stouffer
  • Sergey Malyshev
  • John P Krasting
  • George C Hurtt
  • Stephen W Pacala
چکیده

Previous studies have demonstrated the importance of enhanced vegetation growth under future elevated atmospheric CO2 for 21st century climate warming. Surprisingly no study has completed an analogous assessment for the historical period, during which emissions of greenhouse gases increased rapidly and land-use changes (LUC) dramatically altered terrestrial carbon sources and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive Earth System Model ESM2G and a reconstruction of the LUC, we estimate that enhanced vegetation growth has lowered the historical atmospheric CO2 concentration by 85 ppm, avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate that without enhanced vegetation growth the total residual terrestrial carbon flux (i.e., the net land flux minus LUC flux) would be a source of 65-82 Gt of carbon (GtC) to atmosphere instead of the historical residual carbon sink of 186-192 GtC, a carbon saving of 251-274 GtC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015

Understanding the variations in global land carbon uptake, and their driving mechanisms, is essential if we are to predict future carbon-cycle feedbacks on global environmental changes. Satellite observations of vegetation greenness have shown consistent greening across the globe over the past three decades. Such greening has driven the increasing land carbon sink, especially over the growing s...

متن کامل

Warming climate extends dryness-controlled areas of terrestrial carbon sequestration

At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16°C, above which terrestrial CO₂ fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warm...

متن کامل

Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback

[1] Carbon-climate feedback has been identified as one of the key areas of synthesis for the next Inter-governmental Panel on Climate Change (IPCC); however, most of the models on which the IPCC will rely are yet to consider vital interactions between nitrogen (N) and carbon (C) cycles. A major impediment to including N limitation in model predictions has been the lack of constraint to rates of...

متن کامل

Spring hydrology determines summer net carbon uptake in northern ecosystems

Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the normalized difference vegetation index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (⩾50°N). Here we analyze the ...

متن کامل

تأثیر کاربری‌های مختلف اراضی بر تصاعد گازهای گلخانه‌ای

An increase in the emission of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil surface to the atmosphere has been of worldwide concern over the last several decades. Carbon dioxide is recognized as a significant contributor to global warming and climatic change, accounting for 60% of total greenhouse effect. The aim of this research was to dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 42  شماره 

صفحات  -

تاریخ انتشار 2013