Depth-integrated, non-hydrostatic model for wave breaking and run-up
نویسندگان
چکیده
This paper describes the formulation, verification, and validation of a depth-integrated, non-hydrostatic model with a semi-implicit, finite difference scheme. The formulation builds on the nonlinear shallow-water equations and utilizes a non-hydrostatic pressure term to describe weakly dispersive waves. A momentumconserved advection scheme enables modeling of breaking waves without the aid of analytical solutions for bore approximation or empirical equations for energy dissipation. An upwind scheme extrapolates the free-surface elevation instead of the flow depth to provide the flux in the momentum and continuity equations. This greatly improves the model stability, which is essential for computation of energetic breaking waves and run-up. The computed results show very good agreement with laboratory data for wave propagation, transformation, breaking, and run-up. Since the numerical scheme to the momentum and continuity equations remains explicit, the implicit non-hydrostatic solution is directly applicable to existing nonlinear shallow-water models. Copyright q 2008 John Wiley & Sons, Ltd.
منابع مشابه
ISPH Numerical Modeling of Nonlinear Wave Run-up on Steep Slopes
Non-breaking tsunami waves run-up on steep slopes can cause severe damages to coastal structures. The estimation of the wave run-up rate caused by tsunami waves are important to understand the performance and safety issues of the breakwater in practice. In this paper, an Incompressible Smoothed Particle Hydrodynamics method (ISPH) method was utilized for the 2DV numerical modeling of nonli...
متن کاملNumerical modeling of wave propagation, breaking and run-up on a beach
A numerical method for free-surface flow is presented at the aim of studying water waves in coastal areas. The method builds on the nonlinear shallow water equations and utilizes a non-hydrostatic pressure term to describe short waves. A vertical boundary-fitted grid is used with the water depth divided into a number of layers. A compact finite difference scheme is employed that takes into acco...
متن کاملDepth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up
Tsunamis generated by earthquakes involve physical processes of different temporal and spatial scales that extend across the ocean to the shore. This paper presents a shock-capturing dispersive wave model in the spherical coordinate system for basin-wide evolution and coastal run-up of tsunamis and discusses the implementation of a two-way grid-nesting scheme to describe the wave dynamics at re...
متن کاملSolution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملApplication of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics
Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. Th...
متن کامل