Automatic geomorphic feature extraction from lidar in flat and engineered landscapes
نویسندگان
چکیده
[1] High-resolution topographic data derived from light detection and ranging (lidar) technology enables detailed geomorphic observations to be made on spatially extensive areas in a way that was previously not possible. Availability of this data provides new opportunities to study the spatial organization of landscapes and channel network features, increase the accuracy of environmental transport models, and inform decisions for targeting conservation practices. However, with the opportunity of increased resolution topographic data come formidable challenges in terms of automatic geomorphic feature extraction, analysis, and interpretation. Low-relief landscapes are particularly challenging because topographic gradients are low, and in many places both the landscape and the channel network have been heavily modified by humans. This is especially true for agricultural landscapes, which dominate the midwestern United States. The goal of this work is to address several issues related to feature extraction in flat lands by using GeoNet, a recently developed method based on nonlinear multiscale filtering and geodesic optimization for automatic extraction of geomorphic features (channel heads and channel networks) from high-resolution topographic data. Here we test the ability of GeoNet to extract channel networks in flat and human-impacted landscapes using 3 m lidar data for the Le Sueur River Basin, a 2880 km subbasin of the Minnesota River Basin. We propose a curvature analysis to differentiate between channels and manmade structures that are not part of the river network, such as roads and bridges. We document that Laplacian curvature more effectively distinguishes channels in flat, human-impacted landscapes compared with geometric curvature. In addition, we develop a method for performing automated channel morphometric analysis including extraction of cross sections, detection of bank locations, and identification of geomorphic bankfull water surface elevation. Using the slope plotted along each channel-floodplain cross section, we demonstrate the ability to identify and measure the height of river banks and bluffs. Finally, we present an example that demonstrates how extracting such features automatically is important for modeling channel evolution, water and sediment transport, and channel-floodplain sediment exchange.
منابع مشابه
Automatic identification of watercourses in flat and engineered landscapes by computing the skeleton of a LiDAR point cloud
Drainage networks play a crucial role in protecting land against floods. It is therefore important to have an accurate map of the watercourses that form the drainage network. Previous work on the automatic identification of watercourses was typically based on grids, focused on natural landscapes, and used mostly the slope and curvature of the terrain. We focus in this paper on areas that are ch...
متن کاملTowards DTM Generation from LIDAR Data in Hilly Terrain using Wavelets
LIght Detection And Ranging (LIDAR) for terrain and land surveying has contributed to many environmental, engineering and civil applications. However, the analysis of Digital Surface Models (DSMs) from complex LIDAR data is still challenging especially for highly sloped landscapes. Commonly, the first task to investigate LIDAR data point clouds is to separate ground and object points as a prepa...
متن کاملUAS-SfM for Coastal Research: Geomorphic Feature Extraction and Land Cover Classification from High-Resolution Elevation and Optical Imagery
The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM) photogrammetry applied to imagery acquired by unmanned aerial systems (UAS) offers a rapid and inexpensive means to produce high-resolution topographic and ...
متن کاملAutomatic Road Extraction from Airborne LiDAR : A Review
LiDAR is the powerful Remote Sensing Technology for the acquisition of 3D information from terrain surface. This paper surveys the state of the art on automated road feature extraction from airborne Light Detection and Ranging (LiDAR) data. It presents a bibliography of nearly 50 references related to this topic. This includes work related to various main approaches used for extracting road fro...
متن کامل