Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans.

نویسندگان

  • Sudipta Chakraborty
  • Pan Chen
  • Julia Bornhorst
  • Tanja Schwerdtle
  • Fabian Schumacher
  • Burkhard Kleuser
  • Aaron B Bowman
  • Michael Aschner
چکیده

Overexposure to the essential metal manganese (Mn) can result in an irreversible condition known as manganism that shares similar pathophysiology with Parkinson's disease (PD), including dopaminergic (DAergic) cell loss that leads to motor and cognitive impairments. However, the mechanisms behind this neurotoxicity and its relationship with PD remain unclear. Many genes confer risk for autosomal recessive, early-onset PD, including the parkin/PARK2 gene that encodes for the E3 ubiquitin ligase Parkin. Using Caenorhabditis elegans (C. elegans) as an invertebrate model that conserves the DAergic system, we previously reported significantly increased Mn accumulation in pdr-1/parkin mutants compared to wildtype (WT) animals. For the current study, we hypothesize that this enhanced accumulation is due to alterations in Mn transport in the pdr-1 mutants. While no change in mRNA expression of the major Mn importer proteins (smf-1-3) was found in pdr-1 mutants, significant downregulation in mRNA levels of the putative Mn exporter ferroportin (fpn-1.1) was observed. Using a strain overexpressing fpn-1.1 in worms lacking pdr-1, we show evidence for attenuation of several endpoints of Mn-induced toxicity, including survival, metal accumulation, mitochondrial copy number and DAergic integrity, compared to pdr-1 mutants alone. These changes suggest a novel role of pdr-1 in modulating Mn export through altered transporter expression, and provides further support of metal dyshomeostasis as a component of Parkinsonism pathophysiology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative studies of duodenal and macrophage ferroportin proteins.

Intestinal epithelial cells and reticuloendothelial macrophages are, respectively, involved in diet iron absorption and heme iron recycling from senescent erythrocytes, two critical processes of iron homeostasis. These cells appear to use the same transporter, ferroportin (Slc40a1), to export iron. The aim of this study was to compare the localization, expression, and regulation of ferroportin ...

متن کامل

Caenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span.

Transactive response DNA-binding protein (TARDBP/TDP-43), a heterogeneous nuclear ribonucleoprotein (hnRNP) with diverse activities, is a common denominator in several neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Orthologs of TDP-43 exist in animals ranging from mammals to invertebrates. Here, we systematically studied mutant Caenor...

متن کامل

Coupling mitogenesis and mitophagy for longevity.

Maintenance of mitochondrial function and energy homeostasis requires both generation of newly synthesized and elimination of dysfunctional mitochondria. Impaired mitochondrial function and excessive mitochondrial content are major characteristics of aging and several human pathophysiological conditions, highlighting the pivotal role of the coordination between mitochondrial biogenesis and mito...

متن کامل

Interactions of manganese with iron, zinc, and copper in neonatal C57BL/6J and parkin mice following developmental oral manganese exposure

High dose manganese (Mn) exposure can result in changes in tissue concentrations of other essential metals due to Mn-induced alterations in metal absorption and competition for metal transporters and regulatory proteins. We evaluated responses in mice with a Parkin gene defect (parkin mice) and a wildtype strain (C57BL/6J) following neonatal Mn exposure. Neonatal parkin and C57BL/6J littermates...

متن کامل

Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans

Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Metallomics : integrated biometal science

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2015