A modified learning algorithm for the multilayer neural network with multi-valued neurons based on the complex QR decomposition
نویسندگان
چکیده
In this paper, a modified learning algorithm for the multilayer neural network with the multi-valued neurons (MLMVN) is presented. The MLMVN, which is a member of complex-valued neural networks family, has already demonstrated a number of important advantages over other techniques. A modified learning algorithm for this network is based on the introduction of an acceleration step, performing by means of the complex QR decomposition and on the new approach to calculation of the output neurons errors: they are calculated as the differences between the corresponding desired outputs and actual values of the weighted sums. These modifications improve significantly the existing derivative-free backpropagation learning algorithm for the MLMVN in terms of learning speed. A modified learning algorithm requires two orders of magnitude lower number of training epochs and less time for its convergence when compared to the existing learning algorithm. Good performance is confirmed not only by the much quicker convergence of the learning algorithm, but also by the compatible or even higher classification/prediction accuracy, which is obtained by testing over some benchmarks (Mackey-Glass and Jenkins-Box time series) and over some satellite spectral data examined in a comparison test. Kewords— complex-valued neural networks, derivative-free learning, QR decomposition, time series prediction
منابع مشابه
Multilayer Feedforward Neural Network Based on Multi-valued Neurons (MLMVN) and a Backpropagation Learning Algorithm
A multilayer neural network based on multi-valued neurons is considered in the paper. A multivalued neuron (MVN) is based on the principles of multiple-valued threshold logic over the field of the complex numbers. The most important properties of MVN are: the complex-valued weights, inputs and output coded by the k roots of unity and the activation function, which maps the complex plane into th...
متن کاملThe Genetic Code as a Function of Multiple-Valued Logic Over the Field of Complex Numbers and its Learning using Multilayer Neural Network Based on Multi-Valued Neurons
It is shown in this paper that a model of multiplevalued logic over the field of complex numbers is the most appropriate for the representation of the genetic code as a multiple-valued function. The genetic code is considered as a partially defined multiple-valued function of three variables. The genetic code is the four-letter nucleic acid code, and it is translated into a 20-letter amino acid...
متن کاملPrediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks
The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...
متن کاملSolving Selected Classification Problems in Bioinformatics Using Multilayer Neural Network Based on Multi-Valued Neurons (MLMVN)
A multilayer neural network based on multi-valued neurons (MLMVN) is a new powerful tool for solving classification, recognition and prediction problems. This network has a number of specific properties and advantages that follow from the nature of a multi-valued neuron (complexvalued weights and inputs/outputs lying on the unit circle). Its backpropagation learning algorithm is derivative-free...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 16 شماره
صفحات -
تاریخ انتشار 2012