Optimal Parameterizations of Bézier Surfaces

نویسندگان

  • Yi-Jun Yang
  • Jun-Hai Yong
  • Hui Zhang
  • Jean-Claude Paul
  • Jia-Guang Sun
چکیده

The presentation of Bézier surfaces affects the results of rendering and tessellating applications greatly. To achieve optimal parameterization, we present two reparameterization algorithms using linear Möbius transformations and quadratic transformations, respectively. The quadratic reparameterization algorithm can produce more satisfying results than the Möbius reparameterization algorithm with degree elevation cost. Examples are given to show the performance of our algorithms for rendering and tessellating applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algorithm to improve parameterizations of rational Bézier surfaces using rational bilinear reparameterization

The parameterization of rational Bézier surfaces greatly affects rendering and tessellation results. The uniformity and orthogonality of iso-parametric curves are two key properties of the optimal parameterization. The only rational Bézier surfaces with uniform iso-parametric curves are bilinear surfaces, and the only rational Bézier surfaces with uniform and orthogonal iso-parametric curves ar...

متن کامل

Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves

A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...

متن کامل

Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves

A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...

متن کامل

TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE

In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...

متن کامل

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006