Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific
نویسندگان
چکیده
Zooplankton concentrations are known to vary by as much as an order of magnitude over a lunar cycle. Here, we conducted an experiment to determine the effect of ambient zooplankton concentrations over a lunar cycle on feeding rates of the corals Pavona gigantea (Verrill) (mounding coral, 3.0 mm diameter polyps) and Pocillopora damicornis (Linnaeus) (branching coral, 1.0 mm diameter polyps) in situ on a shallow reef at Isla Contadora, Gulf of Panamá (Pacific), Panamá. Coral fragments exposed to either enhanced or ambient zooplankton concentrations were allowed to feed for 1 h, collected, and their gut contents dissected. The number of zooplankton captured was counted, feeding rates calculated per cm, and the species composition of captured zooplankton assemblages determined. Although both species captured the same zooplankton assemblage, feeding rates were always significantly higher for P. gigantea than for P. damicornis. Under ambient flow and zooplankton concentrations, feeding rates were highly correlated with zooplankton concentration in the 200–400 Am size class. Under constantly enhanced zooplankton concentrations in the control fragments, feeding rates did not vary significantly over the lunar cycle. As such, coral feeding rates vary not as a result of lunar phase per se, but with changes in zooplankton abundance over the lunar cycle. Coral feeding rates are directly proportional to ambient zooplankton concentrations and may vary by as much as 50% over a lunar cycle, suggesting that corals must cope with major swings in sources of fixed carbon and nutrients over relatively short timescales. D 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Epizoic acoelomorph flatworms impair zooplankton feeding by the scleractinian coral Galaxea fascicularis
Many scleractinian coral species host epizoic acoelomorph flatworms, both in aquaculture and in situ. These symbiotic flatworms may impair coral growth and health through light-shading, mucus removal and disruption of heterotrophic feeding. To quantify the effect of epizoic flatworms on zooplankton feeding, we conducted video analyses of single polyps of Galaxea fascicularis (Linnaeus 1767) gra...
متن کاملWater ̄ow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a ®eld enclosure
Scleractinian corals experience a wide range of ̄ow regimes which, coupled with colony morphology, can aect the ability of corals to capture zooplankton and other particulate materials. We used a ®eld enclosure oriented parallel to prevailing oscillatory ̄ow on the forereef at Discovery Bay, Jamaica, to investigate rates of zooplankton capture by corals of varying morphology and polyp size unde...
متن کاملBiodiversity and distribution patterns of coral reef ecosystems in ROPME Sea Area (Inner part: Persian Gulf -Iranian waters)
The Persian Gulf is northern part of the ROPME Sea Area (RSA), and is semi-enclosed shallow sea which located in subtropical climate. Measuring is 1000km in length, varying in width 60-340km, and average depth is about 35m and maximum depth is 105m. This research was carried out during 2005-2010 for reviewing the corals status and determination of coral reef habitats distribution in the Persian...
متن کاملInteractions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata.
We investigated the effect of zooplankton feeding on tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Microcolonies were divided into two groups: starved corals (SC), which were not fed during the experiment, and fed corals (FC), which were abundantly fed with Artemia salina nauplii and freshly collected zooplankton. Changes in tissue growth, photosynthesis and calci...
متن کاملA sea water barrier to coral gene flow.
Land is not the only barrier to dispersal encountered by marine organisms. For sedentary shallow water species, there is an additional, marine barrier, 5000 km of uninterrupted deep-water stretch between the central and the eastern Pacific. This expanse of water, known as the ‘Eastern Pacific Barrier’, has been separating faunas of the two oceanic regions since the beginning of the Cenozoic. Sp...
متن کامل