Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples

نویسندگان

  • Rodrigo B. Platte
  • Lloyd N. Trefethen
  • Arno B. J. Kuijlaars
چکیده

It is shown that no stable procedure for approximating functions from equally spaced samples can converge exponentially for analytic functions. To avoid instability, one must settle for root-exponential convergence. The proof combines a Bernstein inequality of 1912 with an estimate due to Coppersmith and Rivlin in 1992.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impossibility of Approximating Analytic Functions from Equispaced Samples

It is shown that no stable procedure for approximating functions from equally spaced samples can converge geometrically for analytic functions. The proof combines a Bernstein inequality of 1912 with an estimate due to Coppersmith and Rivlin in 1992. In a nutshell, you can't beat Gibbs and Runge. Monday December 14 2009 4:30 PM Building 4, Room 370 Refreshments are available in Building 2, Room ...

متن کامل

Convergence of Linear Barycentric Rational Interpolation for Analytic Functions

Polynomial interpolation to analytic functions can be very accurate, depending on the distribution of the interpolation nodes. However, in equispaced nodes and the like, besides being badly conditioned, these interpolants fail to converge even in exact arithmetic in some cases. Linear barycentric rational interpolation with the weights presented by Floater and Hormann can be viewed as blended p...

متن کامل

Efficient High-order Rational Integration and Deferred Correction with Equispaced Data

Stable high-order linear interpolation schemes are well suited for the accurate approximation of antiderivatives and the construction of efficient quadrature rules. In this paper we utilize for this purpose the family of linear barycentric rational interpolants by Floater and Hormann, which are particularly useful for interpolation with equispaced nodes. We analyze the convergence of integrals ...

متن کامل

A Stability Barrier for Reconstructions from Fourier Samples

We prove that any stable method for resolving the Gibbs phenomenon – that is, recovering high-order accuracy from the first m Fourier coefficients of an analytic and nonperiodic function – can converge at best root-exponentially fast in m. Any method with faster convergence must also be unstable, and in particular, exponential convergence implies exponential ill-conditioning. This result is ana...

متن کامل

A windowed Fourier method for approximation of non-periodic functions on equispaced nodes

A windowed Fourier method is proposed for approximation of nonperiodic functions on equispaced nodes. Spectral convergence is obtained in most of the domain, except near the boundaries, where polynomial least-squares is used to correct the approximation. Because the method can be implemented using partition of unit and domain decomposition, it is suitable for adaptive and parallel implementatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Review

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2011