Tracking Climate Models

نویسندگان

  • Claire Monteleoni
  • Gavin A. Schmidt
  • Shailesh Saroha
چکیده

Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate scientists, and run as computer simulations, to predict climate. There is currently high variance among the predictions of 20 global climate models, from various laboratories around the world, that inform the Intergovernmental Panel on Climate Change (IPCC). Given temperature predictions from 20 IPCC global climate models, and over 100 years of historical temperature data, we track the changing sequence of which model predicts best at any given time. We use an algorithm due to Monteleoni and Jaakkola that models the sequence of observations using a hierarchical learner, based on a set of generalized Hidden Markov Models, where the identity of the current best climate model is the hidden variable. The transition probabilities between climate models are learned online, simultaneous to tracking the temperature predictions. On historical global mean temperature data, our online learning algorithm’s average prediction loss nearly matches that of the best performing climate model in hindsight. Moreover its performance surpasses that of the average model prediction, which is the default practice in climate science, the median prediction, and least squares linear regression. We also experimented on climate model predictions through the year 2098. Simulating labels with the predictions of any one climate model, we found significantly improved performance using our online learning algorithm with respect to the other climate models, and techniques. To complement our global results, we also ran experiments on IPCC global climate model temperature predictions for the specific geographic regions of Africa, Europe, and North America. On historical data, at both annual and monthly time-scales, and in future simulations, our algorithm typically outperformed both the best climate model per region, and linear regression. Notably, our algorithm consistently outperformed the average prediction over models, the current benchmark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Software quality in climate modelling by Jon Pipitone

Software quality in climate modelling Jon Pipitone Masters of Science Graduate Department of Computer Science University of Toronto 2010 A climate model is an executable theory of the climate; the model encapsulates climatological theories in software so that they can be simulated and their implications investigated. Thus, in order to trust a climate model one must trust that the software it is...

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

Global Climate Model Tracking Using Geospatial Neighborhoods

A key problem in climate science is how to combine the predictions of the multi-model ensemble of global climate models. Recent work in machine learning (Monteleoni et al. 2011) showed the promise of an algorithm for online learning with experts for this task. We extend the Tracking Climate Models (TCM) approach to (1) take into account climate model predictions at higher spatial resolutions an...

متن کامل

Proceedings of the 2010 Conference on Intelligent Data Understanding, CIDU 2010, October 5-6, 2010, Mountain View, California, USA

Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate scientists to simulate and predict climate. Given temperature predictions from the top 20 climate models worldwide, and over 100 years of historical temperature data, we track the changing sequence of which model currently predicts best. We use an algorithm due to Monteleoni and Jaakkola that m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010