Vascular segmentation in hepatic CT images using adaptive threshold fuzzy connectedness method

نویسندگان

  • Xiaoxi Guo
  • Shaohui Huang
  • Xiaozhu Fu
  • Boliang Wang
  • Xiaoyang Huang
چکیده

BACKGROUND Fuzzy connectedness method has shown its effectiveness for fuzzy object extraction in recent years. However, two problems may occur when applying it to hepatic vessel segmentation task. One is the excessive computational cost, and the other is the difficulty of choosing a proper threshold value for final segmentation. METHODS In this paper, an accelerated strategy based on a lookup table was presented first which can reduce the connectivity scene calculation time and achieve a speed-up factor of above 2. When the computing of the fuzzy connectedness relations is finished, a threshold is needed to generate the final result. Currently the threshold is preset by users. Since different thresholds may produce different outcomes, how to determine a proper threshold is crucial. According to our analysis of the hepatic vessel structure, a watershed-like method was used to find the optimal threshold. Meanwhile, by using Ostu algorithm to calculate the parameters for affinity relations and assigning the seed with the mean value, it is able to reduce the influence on the segmentation result caused by the location of the seed and enhance the robustness of fuzzy connectedness method. RESULTS Experiments based on four different datasets demonstrate the efficiency of the lookup table strategy. These experiments also show that an adaptive threshold found by watershed-like method can always generate correct segmentation results of hepatic vessels. Comparing to a refined region-growing algorithm that has been widely used for hepatic vessel segmentation, fuzzy connectedness method has advantages in detecting vascular edge and generating more than one vessel system through the weak connectivity of the vessel ends. CONCLUSIONS An improved algorithm based on fuzzy connectedness method is proposed. This algorithm has improved the performance of fuzzy connectedness method in hepatic vessel segmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...

متن کامل

Adaptive Fuzzy Connectedness-Based Medical Image Segmentation

In this paper, we present an enhancement of the fuzzy connectedness-based image segmentation method based on dynamic computation of adaptive weights for the homogeneity and the directional gradient energy functions. Adaptive weights enhance the performance and robustness of the conventional fuzzy connectedness-based segmentation while decreasing the degree of user interaction. The accuracy of t...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

A Novel Unsupervised Segmentation Method for MR Brain Images Based on Fuzzy Methods

Image segmentation is an important research topic in image processing and computer vision community. In this paper, we present a novel segmentation method based on the combination of fuzzy connectedness and adaptive fuzzy C means (AFCM). AFCM handles intensity inhomogeneities problem in magnetic resonance images (MRI) and provides effective seeds for fuzzy connectedness simultaneously. With the...

متن کامل

Image segmentation via fuzzy object extraction and edge detection and its medical application

A new interactive segmentation method that combines fuzzy connected object extraction and edge detection is proposed. Fuzzy connectedness is a global fuzzy relation, which effectively captures fuzzy “hanging togetherness” of image elements. First, by selecting the seed point, fuzzy connectedness value between each image element and the seed point is computed via dynamic programming. Then, throu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015