Delivery of epitopes by the Salmonella type III secretion system for vaccine development.

نویسندگان

  • H Rüssmann
  • H Shams
  • F Poblete
  • Y Fu
  • J E Galán
  • R O Donis
چکیده

Avirulent strains of Salmonella typhimurium are being considered as antigen delivery vectors. During its intracellular stage in the host, S. typhimurium resides within a membrane-bound compartment and is not an efficient inducer of class I-restricted immune responses. Viral epitopes were successfully delivered to the host-cell cytosol by using the type III protein secretion system of S. typhimurium. This resulted in class I-restricted immune responses that protected vaccinated animals against lethal infection. This approach may allow the efficient use of S. typhimurium as an antigen delivery system to control infections by pathogens that require this type of immune response for protection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines.

Bacterial vectors may offer many advantages over other antigen delivery systems for cancer vaccines. We engineered a Salmonella typhimurium vaccine strain to deliver the NY-ESO-1 tumor antigen (S. typhimurium-NY-ESO-1) through a type III protein secretion system. The S. typhimurium-NY-ESO-1 construct elicited NY-ESO-1-specific CD8+ and CD4+ T cells from peripheral blood lymphocytes of cancer pa...

متن کامل

Optimization of the delivery of heterologous proteins by the Salmonella enterica serovar Typhimurium type III secretion system for vaccine development.

Type III protein secretion systems, which are organelles with the capacity to deliver bacterial proteins into host cells, have been adapted to deliver heterologous antigens for vaccine development. A limitation of these antigen delivery systems is that some proteins are not amenable to secretion through this pathway. We show here that proteins from the simian and human immunodeficiency viruses ...

متن کامل

Oral Delivery of the Sj23LHD-GST Antigen by Salmonella typhimurium Type III Secretion System Protects against Schistosoma japonicum Infection in Mice

BACKGROUND Schistosomiasis japonica is a zoonotic parasitic disease and oral vaccine delivery system would be benefit for prevention of this disease. Although attenuated salmonella has been used as an antigen expression vector for oral vaccine development, the membrane-bound vacuoles in which bacteria reside hinders the presentation of expressed heterologous antigens to the major histocompatibi...

متن کامل

Induction of specific CD8+ memory T cells and long lasting protection following immunization with Salmonella typhimurium expressing a lymphocytic choriomeningitis MHC class I-restricted epitope.

Numerous studies have shown the potential of Salmonella typhimurium as a vector for delivery of heterologous proteins for vaccination against other pathogens. Earlier studies showed that the inefficient elicitation of MHC class I-restricted responses could limit the use of S. typhimurium as a heterologous antigen delivery vector for vaccination. We recently developed an approach to overcome thi...

متن کامل

Engineering the type III secretion system in non-replicating bacterial minicells for antigen delivery

Type III protein secretion systems are being considered for vaccine development as virtually any protein antigen can be engineered for delivery by these nanomachines into the class I antigen presentation pathway to stimulate antigen-specific CD8(+) T cells. A limitation in the use of this system is that it requires live virulence-attenuated bacteria, which may preclude its use in certain popula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 281 5376  شماره 

صفحات  -

تاریخ انتشار 1998