Most Odd Degree Hyperelliptic Curves Have Only One Rational Point

نویسندگان

  • BJORN POONEN
  • Robert F. Coleman
چکیده

Consider the smooth projective models C of curves y = f(x) with f(x) ∈ Z[x] monic and separable of degree 2g + 1. We prove that for g ≥ 3, a positive fraction of these have only one rational point, the point at infinity. We prove a lower bound on this fraction that tends to 1 as g → ∞. Finally, we show that C(Q) can be algorithmically computed for such a fraction of the curves. The method can be summarized as follows: using p-adic analysis and an idea of McCallum, we develop a reformulation of Chabauty’s method that shows that certain computable conditions imply #C(Q) = 1; on the other hand, using further p-adic analysis, the theory of arithmetic surfaces, a new result on torsion points on hyperelliptic curves, and crucially the Bhargava–Gross theorems on the average number and equidistribution of nonzero 2-Selmer group elements, we prove that these conditions are often satisfied for p = 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chabauty’s Method Proves That Most Odd Degree Hyperelliptic Curves Have Only One Rational Point

Consider the smooth projective models C of curves y = f(x) with f(x) ∈ Z[x] monic and separable of degree 2g + 1. We prove that for g ≥ 3, a positive fraction of these have only one rational point, the point at infinity. We prove a lower bound on this fraction that tends to 1 as g →∞. Finally, we show that C(Q) can be algorithmically computed for such a fraction of the curves, via Chabauty’s me...

متن کامل

Uniform Bounds for the Number of Rational Points on Hyperelliptic Curves of Small Mordell-weil Rank

We show that there is a bound depending only on g, r and [K : Q] for the number of K-rational points on a hyperelliptic curve C of genus g over a number field K such that the Mordell-Weil rank r of its Jacobian is at most g − 3. If K = Q, an explicit bound is 8rg + 33(g − 1) + 1. The proof is based on Chabauty’s method; the new ingredient is an estimate for the number of zeros of an abelian log...

متن کامل

The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point

We prove that when all hyperelliptic curves of genus n ≥ 1 having a rational Weierstrass point are ordered by height, the average size of the 2-Selmer group of their Jacobians is equal to 3. It follows that (the limsup of) the average rank of the Mordell-Weil group of their Jacobians is at most 3/2. The method of Chabauty can then be used to obtain an effective bound on the number of rational p...

متن کامل

On Atkin-lehner Quotients of Shimura Curves

We study the Čerednik-Drinfeld p-adic uniformization of certain AtkinLehner quotients of Shimura curves over Q. We use it to determine over which local fields they have rational points and divisors of a given degree. Using a criterion of Poonen and Stoll we show that the Shafarevich-Tate group of their jacobians is not of square order for infinitely many cases. In [PSt] Poonen and Stoll have sh...

متن کامل

Counting hyperelliptic curves

We find a closed formula for the number hyp(g) of hyperelliptic curves of genus g over a finite field k = Fq of odd characteristic. These numbers hyp(g) are expressed as a polynomial in q with integer coefficients that depend on g and the set of divisors of q − 1 and q + 1. As a by-product we obtain a closed formula for the number of self-dual curves of genus g. A hyperelliptic curve is self-du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013