A note on minimal matching covered graphs
نویسنده
چکیده
A graph is called matching covered if for its every edge there is a maximum matching containing it. It is shown that minimal matching covered graphs contain a perfect matching.
منابع مشابه
A note on PM-compact bipartite graphs
A graph is called perfect matching compact (briefly, PM -compact), if its perfect matching graph is complete. Matching-covered PM -compact bipartite graphs have been characterized. In this paper, we show that any PM -compact bipartite graph G with δ(G) ≥ 2 has an ear decomposition such that each graph in the decomposition sequence is also PM -compact, which implies that G is matching-covered.
متن کاملBounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملCohen-Macaulay $r$-partite graphs with minimal clique cover
In this paper, we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay. It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$, then such a cover is unique.
متن کاملA generalization of Little's Theorem on Pfaffian orientations
Little [12] showed that, in a certain sense, the only minimal non-Pfaffian bipartite matching covered graph is the brace K3,3. Using a stronger notion of minimality than the one used by Little, we show that every minimal nonPfaffian brick G contains two disjoint odd cycles C1 and C2 such that the subgraph G − V (C1 ∪ C2) has a perfect matching. This implies that the only minimal non-Pfaffian so...
متن کاملUnmixed $r$-partite graphs
Unmixed bipartite graphs have been characterized by Ravindra and Villarreal independently. Our aim in this paper is to characterize unmixed $r$-partite graphs under a certain condition, which is a generalization of Villarreal's theorem on bipartite graphs. Also, we give some examples and counterexamples in relevance to this subject.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 306 شماره
صفحات -
تاریخ انتشار 2006