A note on minimal matching covered graphs

نویسنده

  • Vahan V. Mkrtchyan
چکیده

A graph is called matching covered if for its every edge there is a maximum matching containing it. It is shown that minimal matching covered graphs contain a perfect matching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on PM-compact bipartite graphs

A graph is called perfect matching compact (briefly, PM -compact), if its perfect matching graph is complete. Matching-covered PM -compact bipartite graphs have been characterized. In this paper, we show that any PM -compact bipartite graph G with δ(G) ≥ 2 has an ear decomposition such that each graph in the decomposition sequence is also PM -compact, which implies that G is matching-covered.

متن کامل

Bounding cochordal cover number of graphs via vertex stretching

It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...

متن کامل

Cohen-Macaulay $r$-partite graphs with minimal clique cover

‎In this paper‎, ‎we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay‎. ‎It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$‎, ‎then such a cover is unique‎.

متن کامل

A generalization of Little's Theorem on Pfaffian orientations

Little [12] showed that, in a certain sense, the only minimal non-Pfaffian bipartite matching covered graph is the brace K3,3. Using a stronger notion of minimality than the one used by Little, we show that every minimal nonPfaffian brick G contains two disjoint odd cycles C1 and C2 such that the subgraph G − V (C1 ∪ C2) has a perfect matching. This implies that the only minimal non-Pfaffian so...

متن کامل

Unmixed $r$-partite graphs

‎Unmixed bipartite graphs have been characterized by Ravindra and‎ ‎Villarreal independently‎. ‎Our aim in this paper is to‎ ‎characterize unmixed $r$-partite graphs under a certain condition‎, ‎which is a generalization of Villarreal's theorem on bipartite‎ ‎graphs‎. ‎Also, we give some examples and counterexamples in relevance to this subject‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2006