A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice.
نویسندگان
چکیده
All organisms have defense systems against oxidative stress that include multiple genes of antioxidant defense. These genes are induced by reactive oxygen species under condition of oxidative stress. In this study, we found that a 28-bp motif is conserved on the promoter regions of three antioxidant defense genes in rice (Oryza sativa): cytosolic superoxide dismutase (sodCc1), cytosolic thioredoxin (trxh), and glutaredoxin (grx). We demonstrated that the 28-bp sequence acts as a cis-element responsive to oxidative stress by transient expression assay and designated it as CORE (coordinate regulatory element for antioxidant defense). The CORE was activated by methyl viologen treatment and induced a 3.1-fold increase in expression of the reporter gene, but it did not respond to hydrogen peroxide. The expressions of the sodCc1, trxh, and grx genes were coordinately induced by methyl viologen, suggesting that multiple genes involved in antioxidant defense are controlled by a common regulatory mechanism via CORE. Application of the mitogen-activated protein kinase kinase inhibitor caused the constitutive induction of the sodCc1, trxh, and grx genes and the activation of CORE without methyl viologen treatment. These results indicate that a mitogen-activated protein kinase cascade is involved in the gene regulation mediated by CORE.
منابع مشابه
Study of antioxidant defense genes expression profile pattern of rice (Oryza sativa L.) cultivars in response to drought stress
Drought stress is one of the important factors that restrict crop production in the world. This study was conducted to investigate defense gene expression in response to drought stress, and also to evaluate the drought tolerance and its mechanism in rice cultivars based on randomized complete block design in two separate environments (drought stress and non-stress). The rice cultivars used incl...
متن کاملAn important role of Nrf2-ARE pathway in the cellular defense mechanism.
The antioxidant responsive element (ARE) is a cis-acting regulatory element of genes encoding phase II detoxification enzymes and antioxidant proteins, such as NAD(P)H: quinone oxidoreductase 1, glutathione S-transferases, and glutamate-cysteine ligase. Interestingly, it has been reported that Nrf2 (NF-E2-related factor 2) regulates a wide array of ARE-driven genes in various cell types. Nrf2 i...
متن کاملRole of Exogenous Application of Auxin on Antioxidant Enzyme Activities in Rice Under Salt Stress
Phytohormones such as auxin are known to be involved in alleviating the detrimental effects of salinity by modulating the activity of enzymatic antioxidants and improving antioxidant system, which help in sustaining plant growth. The present study envisaged revealing the role of exogenous application of indole-3-acetic acid (IAA) in improving defense mechanisms in two genotypes (FL485 and IR29,...
متن کاملEvaluation of physiological and molecular responses of two rice cultivars to arsenic toxicity
Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. In order to investigate the effect of As (0, 25 and 50 µM) on growth, physiological traits and expression of As and Fe transporters in Tarom hashemi and Fajr rice cultivars, a factorial experiment based on a completely randomized design was conducted in 2020 in greenhouse conditions at Ayatollah Amoli B...
متن کاملInduction of the protective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro.
Parkinson's disease, a progressive neurodegenerative disorder, is characterized by loss of midbrain dopaminergic neurons. The etiology of sporadic Parkinson's disease is unknown; however, oxidative stress is thought to play a major role in disease pathogenesis. Little is known regarding the transcriptional changes that occur in Parkinson's disease. The antioxidant response element is a cis-acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 137 1 شماره
صفحات -
تاریخ انتشار 2005