Generation of Highly Inclined Trans-neptunian Objects by Planet Nine

نویسندگان

  • Konstantin Batygin
  • Michael E. Brown
چکیده

The trans-Neptunian region of the solar system exhibits an intricate dynamical structure, much of which can be explained by an instability-driven orbital history of the giant planets. However, the origins of a highly inclined, and in certain cases retrograde, population of trans-Neptunian objects remain elusive within the framework of this evolutionary picture. In this work, we show that the existence of a distant, Neptune-like planet that resides on an eccentric and mildly inclined orbit fully accounts for the anomalous component the trans-Neptunian orbital distribution. Adopting the same parameters for Planet Nine as those previously invoked to explain the clustering of distant Kuiper Belt orbits in physical space, we carry out a series of numerical experiments that elucidate the physical process though which highly inclined Kuiper Belt objects with semimajor axes smaller than a<100 au are generated. The identified dynamical pathway demonstrates that enigmatic members of the Kuiper Belt such as Drac and Niku are derived from the extended scattered disk of the solar system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Migration of small bodies and dust to the terrestrial planets

We integrated the orbital evolution of 30,000 Jupiter-family comets, 1300 resonant asteroids, and 7000 asteroidal, trans-Neptunian, and cometary dust particles. For initial orbital elements of bodies close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earthcrossing orbits with semi-major axes a<2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs...

متن کامل

Formation and Evolution of the Trans-neptunian Belt and Dust

Trans-Neptunian objects (TNOs) with diameter greater than 100 km currently moving in not too eccentric orbits could be formed directly by the contraction of large rarefied condensations. Along with the gravitational influence of planets, gravitational interactions of TNOs played a certain role in their orbital evolution as well. More than 20% of Earth-crossing objects could have come from the t...

متن کامل

Planetary Satellites, Asteroids, Comets and Meteors

Asteroids, mainly rocky or metallic bodies in the inner solar system, orbit the Sun in various distinct populations (planet-crossers, main-belt asteroids, trans-Neptunian Edgeworth-Kuiper belt objects, Centaurs in the outer planetary region) between which there are transfers over substantial timescales. For example the main belt is the main reservoir replenishing the Earth-crossing asteroids, t...

متن کامل

Scenarios for the Origin of the Orbits of the Trans-neptunian

Explaining the origin of the orbits of 2000 CR105 (a 1⁄4 230 AU, q 1⁄4 44 AU) and 2003 VB12 (a 1⁄4 531 AU, q 1⁄4 74 AU, unofficially known as Sedna) is a major test for our understanding of the primordial evolution of the outer solar system. Gladman et al. have shown that 2000 CR105 could not have been a normal member of the scattered disk that had its perihelion distance increased by chaotic d...

متن کامل

Comet Hazard to the Earth

Migration of trans-Neptunian objects to the Earth is considered. Due to the gravitational influence of large trans-Neptunian objects and mutual collisions, some objects can get such orbits, from which they can be moved inside the Solar System under the gravitational influence of planets. About 10-20% or even more 1-km Earth-crossers could have come from the Edgeworth-Kuiper belt and can move in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016