DFT Study on Intermetallic Pd–Cu Alloy with Cover Layer Pd as Efficient Catalyst for Oxygen Reduction Reaction

نویسندگان

  • Ji Liu
  • Xiaofeng Fan
  • Chang Q Sun
  • Weiguang Zhu
چکیده

Detailed density functional theory (DFT) calculations of the adsorption energies (Ead) for oxygen on monolayer Pd on top of the Pd-Cu face-centered cubic (FCC) alloy and intermetallic B2 structure revealed a linear correspondence between the adsorption energies and the d-band center position. The calculated barrier (Ebarrier) for oxygen dissociation depends linearly on the reaction energy difference (ΔE). The O₂ has a stronger adsorption strength and smaller barrier on the intermetallic Pd-Cu surface than on its FCC alloy surface. The room-temperature free energy (ΔG) analysis suggests the oxygen reduction reaction (ORR) pathways proceed by a direct dissociation mechanism instead of hydrogenation into OOH. These results might be of use in designing intermetallic Pd-Cu as ORR electrocatalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One –step synthesis of PdCo alloy nanoparticles decorated on reduced grahene oxide as an Electro-catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells

We report a Pd-Co (3:1)/graphene oxide (Pd3Co /GO) catalyst through a one-step strategy. GO is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Controllable GO-supported Pd3Co electrocatalystis then was reduced by ethylene glycol as a stabilizing agent to prepare highly dispersed PdCo nanoparticles on carbon graphene oxide to be used as oxygen reduct...

متن کامل

Pt Monolayer Electrocatalyst for Oxygen Reduction Reaction on Pd-Cu Alloy: First-Principles Investigation

First principles approach is used to examine geometric and electronic structure of the catalyst concept aimed to improve activity and utilization of precious Pt metal for oxygen reduction reaction in fuel cells. The Pt monolayers on Pd skin and Pd1−xCux inner core for various compositions x were examined by building the appropriate models starting from Pd-Cu solid solution. We provided a detail...

متن کامل

Pd and Fe3O4 Nanoparticles Supported on ‎N-(2-Aminoethyl)Acetamide Functionalized ‎Cellulose as an Efficient Catalyst for ‎Epoxidation of Styrene

A new efficient heterogeneous catalyst was introduced for the epoxidation of styrene. The catalyst was obtained from functionalization of cellulose with N-(2-aminoethyl)acetamide, and then deposition of nanoparticles and Pd(0) nanoparticles on the modified cellulose. The Fe3O4 nanoparticles were deposited via chemical oxidation in basic media and Pd(0) nanoparticles we...

متن کامل

A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic) Compounds in Methanol Steam Reforming

The activation and catalytic performance of two representative Zr-containing intermetallic systems, namely Cu-Zr and Pd-Zr, have been comparatively studied operando using methanol steam reforming (MSR) as test reaction. Using an inverse surface science and bulk model catalyst approach, we monitored the transition of the initial metal/intermetallic compound structures into the eventual active an...

متن کامل

Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Room‐Temperature Electron Reduction for Oxygen Reduction Reaction

Carbon-supported platinum (Pt) and palladium (Pd) alloy catalyst has become a promising alternative electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this work, the synthesis of highly active and stable carbon-supported Pt-Pd alloy catalysts is reported with a room-temperature electron reduction method. The alloy nanoparticles thus prepared show a pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017