An allometric approach to quantify the extinction vulnerability of birds and mammals.

نویسندگان

  • J P Hilbers
  • A M Schipper
  • A J Hendriks
  • F Verones
  • H M Pereira
  • M A J Huijbregts
چکیده

Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species-specific information. The framework facilitates the estimation of extinction vulnerabilities of data-deficient species. It may be applied to forecast extinction vulnerability in response to a changing environment, by incorporating quantitative relationships between wildlife demographic parameters and environmental drivers like habitat alteration, climate change, or hunting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling of respiratory variables and the breathing pattern in birds: an allometric and phylogenetic approach.

Allometric equations can be useful in comparative physiology in a number of ways, not the least of which include assessing whether a particular species deviates from the norm for its size and phylogenetic group with respect to some specific physiological process or determining how differences in design among groups may be reflected in differences in function. The allometric equations for respir...

متن کامل

Migration in the Anthropocene: how collective navigation, environmental system and taxonomy shape the vulnerability of migratory species.

Recent increases in human disturbance pose significant threats to migratory species using collective movement strategies. Key threats to migrants may differ depending on behavioural traits (e.g. collective navigation), taxonomy and the environmental system (i.e. freshwater, marine or terrestrial) associated with migration. We quantitatively assess how collective navigation, taxonomic membership...

متن کامل

An allometric comparison of microsomal membrane lipid composition and sodium pump molecular activity in the brain of mammals and birds.

Previous research has shown that the lipid milieu surrounding membrane proteins may be an important factor in determining their activity. To investigate this we have examined sodium pump molecular activity and microsomal membrane lipid composition in the brain of five mammalian and eight avian species ranging in size from 30 g mice to 280 kg cattle and 13 g zebra finches to 35 kg emus, respecti...

متن کامل

Acyl composition of muscle membranes varies with body size in birds.

The acyl composition of phospholipids from pectoral muscle of eight species of birds, ranging in size from the 13 g zebra finch to the 34 kg emu, were measured and combined with recent published results for a 3 g hummingbird. This represents an approximately 11000-fold range in body mass. Muscle phospholipids, and thus muscle membrane bilayers, from birds had a relatively constant unsaturated a...

متن کامل

Relationship between body size, Na+-K+-ATPase activity, and membrane lipid composition in mammal and bird kidney.

We investigated the relationship between body size, Na(+)-K(+)-ATPase molecular activity, and membrane lipid composition in the kidney of five mammalian and eight avian species ranging from 30-g mice to 280-kg cattle and 13-g zebra finches to 35-kg emus, respectively. Na(+)-K(+)-ATPase activity was found to be higher in the smaller species of both groups. In small mammals, the higher Na(+)-K(+)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 97 3  شماره 

صفحات  -

تاریخ انتشار 2016