On the Number of Limit Cycles of Planar Quadratic Vector Fields with a Perturbed Center

نویسنده

  • A. YU. FISHKIN
چکیده

We investigate the number of limit cycles of a planar quadratic vector field with a perturbed center-like singular point. An upper bound is obtained on the number of δ-good limit cycles of such a vector field (Theorem 1). Here δ is a parameter characterizing the limit cycles: it shows how far those cycles are from the singular points of the vector field and from the infinite points. The bound also includes another parameter, κ, characterizing the vector field. More precisely, κ gives an estimate on the distance from the vector field to the set consisting of quadratic vector fields with a line of singular points. Earlier, Ilyashenko and Llibre found a bound on the number of δ-good limit cycles of those vector fields which are sufficiently far from the fields with a center-like singular point. Theorem 1 and that bound complement each other and yield a new bound on the number of δ-good limit cycles of a quadratic vector field, regardless of its distance to the vector fields with a center-like singular point (Theorem 2). 1. Quadratic vector fields and their limit cycles A planar quadratic vector field is a vector field given by a system of differential equations of the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix

The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...

متن کامل

Second-order analysis in polynomially perturbed reversible quadratic Hamiltonian systems

We study degree n polynomial perturbations of quadratic reversible Hamiltonian vector fields with one center and one saddle point. It was recently proved that if the first Poincaré–Pontryagin integral is not identically zero, then the exact upper bound for the number of limit cycles on the finite plane is n− 1. In the present paper we prove that if the first Poincaré–Pontryagin function is iden...

متن کامل

Bifurcation of Limit Cycles in Z10-Equivariant Vector Fields of Degree 9

In this paper, we consider the weakened Hilbert’s 16th problem for symmetric planar perturbed polynomial Hamiltonian systems. In particular, a perturbed Hamiltonian polynomial vector field of degree 9 is studied, and an example of Z10-equivariant planar perturbed Hamiltonian systems is constructed. With maximal number of closed orbits, it gives rise to different configurations of limit cycles. ...

متن کامل

Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation

In this paper, we show that perturbing a simple 3-d quadratic system with a center-type singular point can yield at least 10 small-amplitude limit cycles around a singular point. This result improves the 7 limit cycles obtained recently in a simple 3-d quadratic system around a Hopf singular point. Compared with Bautin’s result for quadratic planar vector fields, which can only have 3 small-amp...

متن کامل

Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11

In this article, a systematic procedure has been explored to studying general Zq-equivariant planar polynomial Hamiltonian vector fields for the maximal number of closed orbits and the maximal number of limit cycles after perturbation. Following the procedure by taking special consideration of Z12-equivariant vector fields of degree 11, the maximal of 99 closed orbits are obtained under a well-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010