Piwi Is Required to Limit Exhaustion of Aging Somatic Stem Cells.

نویسندگان

  • Pedro Sousa-Victor
  • Arshad Ayyaz
  • Rippei Hayashi
  • Yanyan Qi
  • David T Madden
  • Victoria V Lunyak
  • Heinrich Jasper
چکیده

Sophisticated mechanisms that preserve genome integrity are critical to ensure the maintenance of regenerative capacity while preventing transformation of somatic stem cells (SCs), yet little is known about mechanisms regulating genome maintenance in these cells. Here, we show that intestinal stem cells (ISCs) induce the Argonaute family protein Piwi in response to JAK/STAT signaling during acute proliferative episodes. Piwi function is critical to ensure heterochromatin maintenance, suppress retrotransposon activation, and prevent DNA damage in homeostasis and under regenerative pressure. Accordingly, loss of Piwi results in the loss of actively dividing ISCs and their progenies by apoptosis. We further show that Piwi expression is sufficient to allay age-related retrotransposon expression, DNA damage, apoptosis, and mis-differentiation phenotypes in the ISC lineage, improving epithelial homeostasis. Our data identify a role for Piwi in the regulation of somatic SC function, and they highlight the importance of retrotransposon control in somatic SC maintenance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells.

piwi represents the first class of genes known to be required for stem cell self-renewal in diverse organisms. In the Drosophila ovary, piwi is required in somatic signaling cells to maintain germline stem cells. Here we show that piwi encodes a novel nucleoplasmic protein present in both somatic and germline cells, with the highly conserved C-terminal region essential for its function. Removin...

متن کامل

Piwi Is Required in Multiple Cell Types to Control Germline Stem Cell Lineage Development in the Drosophila Ovary

The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to its known role in somatic cap cells to ...

متن کامل

The Piwi‐piRNA pathway: road to immortality

Despite its medical, social, and economic significance, understanding what primarily causes aging, that is, the mechanisms of the aging process, remains a fundamental and fascinating problem in biology. Accumulating evidence indicates that a small RNA-based gene regulatory machinery, the Piwi-piRNA pathway, represents a shared feature of nonaging (potentially immortal) biological systems, inclu...

متن کامل

Drosophila piwi Mutants Exhibit Germline Stem Cell Tumors that Are Sustained by Elevated Dpp Signaling

Drosophila Piwi is the founding member of a gonadal clade of Argonaute proteins that serve as silencing effectors for ∼26-32 nt Piwi-interacting RNAs (piRNAs) [1], and piwi mutants exhibit dramatically rudimentary ovaries [2]. It was proposed that somatic Piwi maintains germline stem cells (GSCs) by promoting Dpp signaling, presumably via cap cells that form the somatic niche for GSCs [3-5]. Ho...

متن کامل

c-Fos Repression by Piwi Regulates Drosophila Ovarian Germline Formation and Tissue Morphogenesis

Drosophila melanogaster Piwi functions within the germline stem cells (GSCs) and the somatic niche to regulate GSC self-renewal and differentiation. How Piwi influences GSCs is largely unknown. We uncovered a genetic interaction between Piwi and c-Fos in the somatic niche that influences GSCs. c-Fos is a proto-oncogene that influences many cell and developmental processes. In wild-type ovarian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 20 11  شماره 

صفحات  -

تاریخ انتشار 2017