Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime

نویسندگان

  • Weizhu Bao
  • Yongyong Cai
  • Xiaowei Jia
  • Qinglin Tang
چکیده

We analyze rigorously error estimates and compare numerically spatial/temporal resolution of various numerical methods for the discretization of the Dirac equation in the nonrelativistic limit regime, involving a small dimensionless parameter 0 < ε ≪ 1 which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e. there are propagating waves with wavelength O(ε) and O(1) in time and space, respectively. We begin with several frequently used finite difference time domain (FDTD) methods and obtain rigorously their error estimates in the nonrelativistic limit regime by paying particular attention to how error bounds depend explicitly on mesh size h and time step τ as well as the small parameter ε. Based on the error bounds, in order to obtain ‘correct’ numerical solutions in the nonrelativistic limit regime, i.e. 0 < ε ≪ 1, the FDTD methods share the same ε-scalability on time step: τ = O(ε). Then we propose and analyze two numerical methods for the discretization of the Dirac equation by using the Fourier spectral discretization for spatial derivatives combined with the exponential wave integrator and time-splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their ε-scalability on time step is improved to τ = O(ε) when 0 < ε≪ 1. Extensive numerical results are reported to support our error estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ترکش گلوئون به چارمونیوم برداری J/psi با در نظر گرفتن اثر تابع موج مزون

Studying the production or decay processes of heavy quarkonia (the bound state of heavy quark-antiquark) is a powerful tool to test our understanding of strong interaction dynamics and QCD theory. Fragmentation is the dominant production mechanism for heavy quarkonia with large transverse momentum. The fragmentation refers to the production process of a parton with high transverse momentum whic...

متن کامل

Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime

Weanalyze rigourously error estimates and comparenumerically temporal/ spatial resolution of various numerical methods for solving the Klein–Gordon (KG) equation in the nonrelativistic limit regime, involving a small parameter 0 < ε 1 which is inversely proportional to the speed of light. In this regime, the solution is highly oscillating in time, i.e. there are propagating waves with wavelengt...

متن کامل

A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Dirac Equation in the Nonrelativistic Limit Regime

We propose and rigourously analyze a multiscale time integrator Fourier pseudospectral (MTI-FP) method for the (linear) Dirac equation with a dimensionless parameter ε ∈ (0, 1] which is inversely proportional to the speed of light. In the nonrelativistic limit regime, i.e., 0 < ε 1, the solution exhibits highly oscillatory propagating waves with wavelength O(ε2) and O(1) in time and space, resp...

متن کامل

On the asymptotic analysis of the Dirac-Maxwell system in the nonrelativistic limit

We deal with the “nonrelativistic limit”, i.e. the limit c → ∞, where c is the speed of light, of the nonlinear PDE system obtained by coupling the Dirac equation for a 4-spinor to the Maxwell equations for the self-consistent field created by the “moving charge” of the spinor. This limit, sometimes also called “Post-Newtonian” limit, yields a SchrödingerPoisson system, where the spin and the m...

متن کامل

Symmetric High Order Gautschi-type Exponential Wave Integrators Pseudospectral Method for the Nonlinear Klein-gordon Equation in the Nonrelativistic Limit Regime

A group of high order Gautschi-type exponential wave integrators (EWIs) Fourier pseudospectral method are proposed and analyzed for solving the nonlinear Klein-Gordon equation (KGE) in the nonrelativistic limit regime, where a parameter 0 < ε 1 which is inversely proportional to the speed of light, makes the solution propagate waves with wavelength O(ε2) in time and O(1) in space. With the Four...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2017