MDS codes in Doob graphs

نویسندگان

  • Evgeny Bespalov
  • Denis S. Krotov
چکیده

Аннотация The Doob graph D(m, n), where m > 0, is the direct product of m copies of The Shrikhande graph and n copies of the complete graph K 4 on 4 vertices. The Doob graph D(m, n) is a distance-regular graph with the same parameters as the Hamming graph H(2m + n, 4). In this paper we consider MDS codes in Doob graphs with code distance d ≥ 3. We prove that if 2m + n > 6 and 2 < d < 2m + n, then there are no MDS codes with code distance d. We characterize all MDS codes with code distance d ≥ 3 in Doob graphs D(m, n) when 2m+n ≤ 6. We characterize all MDS codes in D(m, n) with code distance d = 2m + n for all values of m and n. Граф Дуба D(m, n), где m > 0, декартово произведение m ко-пий графа Шрикханде и n копий полного графа K 4 на 4 вершинах. Граф Дуба D(m, n) дистанционно-регулярный граф с теми же па-раметрами, что и граф Хэмминга H(2m+n, 4). В работе рассматри-ваются МДР коды в графах Дуба D(m, n) с кодовым расстоянием d ≥ 3. Доказано, что если 2 < d < 2m + n и 2m + n > 6, то в графе D(m, n) не существует МДР кодов с кодовым расстоянием d. Характеризованы все МДР коды с кодовым расстоянием d ≥ 3 в графах D(m, n) при 2m + n ≤ 6. Также характеризованы все МДР коды в графе D(m, n) с кодовым расстоянием d = 2m + n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the number of maximum independent sets in Doob graphs

The Doob graph D(m,n) is a distance-regular graph with the same parameters as the Hamming graph H(2m+n, 4). The maximum independent sets in the Doob graphs are analogs of the distance-2 MDS codes in the Hamming graphs. We prove that the logarithm of the number of the maximum independent sets in D(m,n) grows as 2(1+o(1)). The main tool for the upper estimation is constructing an injective map fr...

متن کامل

Distance-2 MDS codes and latin colorings in the Doob graphs

The maximum independent sets in the Doob graphs D(m,n) are analogs of the distance-2 MDS codes in Hamming graphs and of the latin hypercubes. We prove the characterization of these sets stating that every such set is semilinear or reducible. As related objects, we study vertex sets with maximum cut (edge boundary) in D(m,n) and prove some facts on their structure. We show that the considered tw...

متن کامل

Perfect codes in Doob graphs

We study 1-perfect codes in Doob graphsD(m,n). We show that such codes that are linear over GR(4) exist if and only if n = (4γ+δ−1)/3 andm = (4γ+2δ−4γ+δ)/6 for some integers γ ≥ 0 and δ > 0. We also prove necessary conditions on (m,n) for 1-perfect codes that are linear over Z4 (we call such codes additive) to exist in D(m,n) graphs; for some of these parameters, we show the existence of codes....

متن کامل

Hyper-self-duality of Hamming and Doob graphs

We show that the Doob and Hamming graphs are hyper-self-dual. We then show that although the Doob graphs are formally dual to certain Hamming graphs, they are not hyper-dual to them. We do so by showing that Bose-Mesner subalgebras and Kronecker products of Bose-Mesner algebras inherit hyper-duality.

متن کامل

A Non-MDS Erasure Code Scheme for Storage Applications

This paper investigates the use of redundancy and self repairing against node failures indistributed storage systems using a novel non-MDS erasure code. In replication method, accessto one replication node is adequate to reconstruct a lost node, while in MDS erasure codedsystems which are optimal in terms of redundancy-reliability tradeoff, a single node failure isrepaired after recovering the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Probl. Inf. Transm.

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2017