The role of nonelastic reactions in absorbed dose distributions from therapeutic proton beams in different medium.

نویسندگان

  • Andrew J Wroe
  • Iwan M Cornelius
  • Anatoly B Rosenfeld
چکیده

Many new techniques for delivering radiation therapy are being developed for the treatment of cancer. One of these, proton therapy, is becoming increasingly popular because of the precise way in which protons deliver dose to the tumor volume. In order to achieve this level of precision, extensive treatment planning needs to be carried out to determine the optimum beam energies, energy spread (which determines the width of the spread-out Bragg peak), and angles for each patient's treatment. Due to the level of precision required and advancements in computer technology, there is increasing interest in the use of Monte Carlo calculations for treatment planning in proton therapy. However, in order to achieve optimum simulation times, nonelastic nuclear interactions between protons and the target nucleus within the patient's internal structure are often not accounted for or are simulated using less accurate models such as analytical or ray tracing. These interactions produce high LET particles such as neutrons, alpha particles, and recoil protons, which affect the dose distribution and biological effectiveness of the beam. This situation has prompted an investigation of the importance of nonelastic products on depth dose distributions within various materials including water, A-150 tissue equivalent plastic, ICRP (International Commission on Radiological Protection) muscle, ICRP bone, and ICRP adipose. This investigation was conducted utilizing the GEANT4.5.2 Monte Carlo hadron transport toolkit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy

Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness.Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to s...

متن کامل

Analysis of Relative Biological Effectiveness of Proton Beams and Iso-effective Dose Profiles Using Geant4

Background: The assessment of RBE quantity in the treatment of cancer tumors with proton beams in treatment planning systems (TPS) is of high significance. Given the significance of the issue and the studies conducted in the literature, this quantity is fixed and is taken as equal to 1.1.Objective: The main objective of this study was to assess RBE quantity of proton beams and their variations ...

متن کامل

Erratum to ‘Microdosimetric calculation of relative biological effectiveness for design of therapeutic proton beams’†

The authors attempt to establish the relative biological effectiveness (RBE) calculation for designing therapeutic proton beams on the basis of microdosimetry. The tissue-equivalent proportional counter (TEPC) was used to measure microdosimetric lineal energy spectra for proton beams at various depths in a water phantom. An RBE-weighted absorbed dose is defined as an absorbed dose multiplied by...

متن کامل

Assessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX

Background: The present study aimed to investigate the equivalent dose in vital organs, including heart and lung, due to secondary particles produced during breast proton therapy. Materials and Methods: The numerical ORNL female-phantom was improved and simulated using the Monte Carlo MCNPX code. The depth-dose profile of proton beams with different energies was simulated. The proper energy ran...

متن کامل

Evaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code

Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2005