Columnar Connectivity and Laminar Processing in Cat Primary Auditory Cortex
نویسندگان
چکیده
BACKGROUND Radial intra- and interlaminar connections form a basic microcircuit in primary auditory cortex (AI) that extracts acoustic information and distributes it to cortical and subcortical networks. Though the structure of this microcircuit is known, we do not know how the functional connectivity between layers relates to laminar processing. METHODOLOGY/PRINCIPAL FINDINGS We studied the relationships between functional connectivity and receptive field properties in this columnar microcircuit by simultaneously recording from single neurons in cat AI in response to broadband dynamic moving ripple stimuli. We used spectrotemporal receptive fields (STRFs) to estimate the relationship between receptive field parameters and the functional connectivity between pairs of neurons. Interlaminar connectivity obtained through cross-covariance analysis reflected a consistent pattern of information flow from thalamic input layers to cortical output layers. Connection strength and STRF similarity were greatest for intralaminar neuron pairs and in supragranular layers and weaker for interlaminar projections. Interlaminar connection strength co-varied with several STRF parameters: feature selectivity, phase locking to the stimulus envelope, best temporal modulation frequency, and best spectral modulation frequency. Connectivity properties and receptive field relationships differed for vertical and horizontal connections. CONCLUSIONS/SIGNIFICANCE Thus, the mode of local processing in supragranular layers differs from that in infragranular layers. Therefore, specific connectivity patterns in the auditory cortex shape the flow of information and constrain how spectrotemporal processing transformations progress in the canonical columnar auditory microcircuit.
منابع مشابه
Laminar diversity of dynamic sound processing in cat primary auditory cortex.
For primary auditory cortex (AI) laminae, there is little evidence of functional specificity despite clearly expressed cellular and connectional differences. Natural sounds are dominated by dynamic temporal and spectral modulations and we used these properties to evaluate local functional differences or constancies across laminae. To examine the layer-specific processing of acoustic modulation ...
متن کاملColumnar transformations in auditory cortex? A comparison to visual and somatosensory cortices.
Auditory cortical columns have been studied for decades, but intracolumnar processing in auditory cortex is still poorly understood, relative to what is known about such processing in visual cortex and somatosensory cortex. While there are certainly striking similarities in cortical structure across the modalities, investigations of auditory cortex anatomy and synaptic physiology have also foun...
متن کاملColumnar and layer-specific representation of spatial sensitivity in mouse primary auditory cortex.
The primary auditory cortex (AI) is implicated in coding sound location, as revealed by behavior-lesion experiments, but our knowledge about the functional organization and laminar specificity of neural spatial sensitivity is still very limited. Using single-unit recordings in mouse AI, we show that (i) an inverse relationship between onset latency and spike count is consistently observed when ...
متن کامل[125I]a-Bungarotoxin binding marks primary sensory areas of developing rat neocortex
The postnatal ontogeny of [t25I]a-bungarotoxin (a-Btx) binding distribution in rat neocortex was described and quantified using autoradiography of in vitro labeled brain sections. During the first two weeks, distinctive transitory radial and laminar patterns emerged. Dense columnar bands of a-Btx binding extended through the depth of primary sensory cortex, including somatosensory, visual and a...
متن کاملLocal potential connectivity in cat primary visual cortex.
Time invariant description of synaptic connectivity in cortical circuits may be precluded by the ongoing growth and retraction of dendritic spines accompanied by the formation and elimination of synapses. On the other hand, the spatial arrangement of axonal and dendritic branches appears stable. This suggests that an invariant description of connectivity can be cast in terms of potential synaps...
متن کامل