Geometric quantum speed limits: a case for Wigner phase space

ثبت نشده
چکیده

The quantum speed limit is a fundamental upper bound on the speed of quantum evolution.However, the actualmathematical expression of this fundamental limit depends on the choice of ameasure of distinguishability of quantum states.We show that quantum speed limits are qualitatively governed by the Schatten-p-normof the generator of quantumdynamics. Since computing Schatten-p-norms can bemathematically involved, we then develop an alternative approach inWigner phase space.Wefind that the quantum speed limit inWigner space is fully equivalent to expressions in density operator space, but that the new bound is significantly easier to compute. Our results are illustrated for the parametric harmonic oscillator and for quantumBrownianmotion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Wigner Function Reconstruction and Compressed Sensing

Wigner function(WF), a quasi-probability distribution in phase space, was first introduced to describe quantum state in quantum mechanics by E. P. Wigner[1]. And later, it was extended to classical optics and signal processing. Since its birth, a great number of applications have been conducted in different fields. As for the original quantum case, like a continuous onedimensional quantum syste...

متن کامل

Phase-Space Approach to Berry Phases

We propose a new formula for the adiabatic Berry phase which is based on phase-space formulation of quantum mechanics. This approach sheds a new light into the correspondence between classical and quantum adiabatic phases — both phases are related with the averaging procedure: Hannay’s angle with averaging over the classical torus and Berry’s phase with averaging over the entire classical phase...

متن کامل

Wigner distributions in quantum mechanics

The Weyl-Wigner description of quantum mechanical operators and states in classical phase-space language is well known for Cartesian systems. We describe a new approach based on ideas of Dirac which leads to the same results but with interesting additional insights. A way to set up Wigner distributions in an interesting non-Cartesian case, when the configuration space is a compact connected Lie...

متن کامل

فرمولبندی هندسی کوانتش تغییرشکل برزین

  In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...

متن کامل

Coherent-state path integral calculation of the Wigner function

We consider a set of operators x̂ = (x̂1, . . . , x̂N ) with diagonal representatives P (n) in the space of generalized coherent states |n〉 : x̂ = ∫ dμ(n)P (n)|n〉〈n|. We regularize the coherent-state path integral as a limit of a sequence of averages 〈 〉L over polygonal paths with L vertices n1...L. The distribution of the path centroid P̄ = 1 L ∑L l=1 P (nl) tends to the Wigner function W (x), the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017