A shape prior-based MRF model for 3D masseter muscle segmentation
نویسندگان
چکیده
Medical image segmentation is generally an ill-posed problem that can only be solved by incorporating prior knowledge. The ambiguities arise due to the presence of noise, weak edges, imaging artifacts, inhomogeneous interior and adjacent anatomical structures having similar intensity profile as the target structure. In this paper we propose a novel approach to segment the masseter muscle using the graph-cut incorporating additional 3D shape priors in CT datasets, which is robust to noise; artifacts; and shape deformations. The main contribution of this paper is in translating the 3D shape knowledge into both unary and pairwise potentials of the Markov Random Field (MRF). The segmentation task is casted as a Maximum-A-Posteriori (MAP) estimation of the MRF. Graph-cut is then used to obtain the global minimum which results in the segmentation of the masseter muscle. The method is tested on 21 CT datasets of the masseter muscle, which are noisy with almost all possessing mild to severe imaging artifacts such as high-density artifacts caused by e.g. the very common dental fillings and dental implants. We show that the proposed technique produces clinically acceptable results to the challenging problem of muscle segmentation, and further provide a quantitative and qualitative comparison with other methods. We statistically show that adding additional shape prior into both unary and pairwise potentials can increase the robustness of the proposed method in noisy datasets.
منابع مشابه
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملCombining Shape Priors and MRF-Segmentation
Wepropose a combination of shape prior models with Markov Random Fields. The model allows to integrate multiple shape priors and appearance models into MRF-models for segmentation. We discuss a recognition task and introduce a general learning scheme. Both tasks are solved in the scope of the model and verified experimentally.
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کامل3D Knowledge-Based Segmentation Using Pose-Invariant Higher-Order Graphs
Segmentation is a fundamental problem in medical image analysis. The use of prior knowledge is often considered to address the ill-posedness of the process. Such a process consists in bringing all training examples in the same reference pose, and then building statistics. During inference, pose parameters are usually estimated first, and then one seeks a compromise between data-attraction and m...
متن کاملEsophagus Segmentation from 3D CT Data Using Skeleton Prior-Based Graph Cut
The segmentation of organs at risk in CT volumes is a prerequisite for radiotherapy treatment planning. In this paper, we focus on esophagus segmentation, a challenging application since the wall of the esophagus, made of muscle tissue, has very low contrast in CT images. We propose in this paper an original method to segment in thoracic CT scans the 3D esophagus using a skeleton-shape model to...
متن کامل