Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase
نویسندگان
چکیده
Iron-dependent halogenases employ cis-halo-Fe(IV)-oxo (haloferryl) complexes to functionalize unactivated aliphatic carbon centers, a capability elusive to synthetic chemists. Halogenation requires (i) coordination of a halide anion (Cl(-) or Br(-)) to the enzyme's Fe(II) cofactor, (ii) coupled activation of O2 and decarboxylation of α-ketoglutarate to generate the haloferryl intermediate, (iii) abstraction of hydrogen (H•) from the substrate by the ferryl and (iv) transfer of the cis halogen as Cl• or Br• to the substrate radical. This enzymatic solution to an unsolved chemical challenge is potentially generalizable to installation of other functional groups, provided that the corresponding anions can support the four requisite steps. We show here that the wild-type halogenase SyrB2 can indeed direct aliphatic nitration and azidation reactions by the same chemical logic. The discovery and enhancement by mutagenesis of these previously unknown reaction types suggest unrecognized or untapped versatility in ferryl-mediated enzymatic C-H bond activation.
منابع مشابه
Characterization of non-heme iron aliphatic halogenase WelO5* from Hapalosiphon welwitschii IC-52-3: Identification of a minimal protein sequence motif that confers enzymatic chlorination specificity in the biosynthesis of welwitindolelinones
The in vitro biochemical characterization revealed that iron/2-oxoglutarate (Fe/2OG)-dependent aliphatic halogenase WelO5* in Hapalosiphon welwitschii IC-52-3 has an enhanced substrate specificity towards 12-epi-hapalindole C (1) in comparison to WelO5 in H. welwitschii UTEX B1830. This allowed us to define the origin of the varied chlorinated versus dechlorinated alkaloid structural diversity ...
متن کاملManganese-catalyzed late-stage aliphatic C-H azidation.
We report a manganese-catalyzed aliphatic C-H azidation reaction that can efficiently convert secondary, tertiary, and benzylic C-H bonds to the corresponding azides. The method utilizes aqueous sodium azide solution as the azide source and can be performed under air. Besides its operational simplicity, the potential of this method for late-stage functionalization has been demonstrated by succe...
متن کاملStringency of the 2-His–1-Asp Active-Site Motif in Prolyl 4-Hydroxylase
The non-heme iron(II) dioxygenase family of enzymes contain a common 2-His-1-carboxylate iron-binding motif. These enzymes catalyze a wide variety of oxidative reactions, such as the hydroxylation of aliphatic C-H bonds. Prolyl 4-hydroxylase (P4H) is an alpha-ketoglutarate-dependent iron(II) dioxygenase that catalyzes the post-translational hydroxylation of proline residues in protocollagen str...
متن کاملAdsorption Efficiency of Iron Modified Carbons for Removal of Pb(II) Ions from Aqueous Solution
Abstract Introduction: The Lead causes severe damage to several systems of the body, especially to bony tissues. Until now, several low-cost biosorbents have been studied for removal of heavy metal ions from aqueous solutions. In the present study, carbonized pomegranate peels modified with Fe2+ and Fe3+ ions and then it was investigated for removal of Pb(II) ions from aqueous solution. ...
متن کاملSyrB2 in syringomycin E biosynthesis is a nonheme FeII -ketoglutarate- and O2-dependent halogenase
The nine-residue lipodepsipeptide syringomycin E, elaborated as a phytotoxin by Pseudomonas syringae pv. syringae B301D contains a 4-Cl-L-Thr-9 moiety where failure to chlorinate results in a 3-fold drop in biological activity. The proteins SyrB1 and SyrB2 encoded by the biosynthetic cluster are shown to act as a substrate and enzyme pair for SyrB2-mediated chlorination of the aminoacyl-Senzyme...
متن کامل