Quantitative analysis of arterial spin labeling FMRI data using a general linear model.

نویسندگان

  • Luis Hernandez-Garcia
  • Hesamoddin Jahanian
  • Daniel B Rowe
چکیده

Arterial spin labeling techniques can yield quantitative measures of perfusion by fitting a kinetic model to difference images (tagged-control). Because of the noisy nature of the difference images investigators typically average a large number of tagged versus control difference measurements over long periods of time. This averaging requires that the perfusion signal be at a steady state and not at the transitions between active and baseline states in order to quantitatively estimate activation induced perfusion. This can be an impediment for functional magnetic resonance imaging task experiments. In this work, we introduce a general linear model (GLM) that specifies Blood Oxygenation Level Dependent (BOLD) effects and arterial spin labeling modulation effects and translate them into meaningful, quantitative measures of perfusion by using standard tracer kinetic models. We show that there is a strong association between the perfusion values using our GLM method and the traditional subtraction method, but that our GLM method is more robust to noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical analyses of null-hypothesis perfusion FMRI data at 1.5 and 4 T.

Functional magnetic resonance imaging (fMRI) based on arterial spin labeling (ASL) perfusion contrast is an emergent methodology for visualizing brain function both at rest and during task performance. Because of the typical pairwise subtraction approach in generating perfusion images, ASL contrast manifests different noise properties and offers potential advantages for some experimental design...

متن کامل

Analysis and design of perfusion-based event-related fMRI experiments.

Perfusion-based functional magnetic resonance imaging (fMRI) using arterial spin labeling (ASL) methods has the potential to provide better localization of the functional signal to the sites of neural activity compared to blood oxygenation level-dependent (BOLD) contrast fMRI. At present, experiments using ASL have been limited to simple block and periodic single-trial designs. We present here ...

متن کامل

Estimation efficiency and statistical power in arterial spin labeling fMRI.

Arterial spin labeling (ASL) data are typically differenced, sometimes after interpolation, as part of preprocessing before statistical analysis in fMRI. While this process can reduce the number of time points by half, it simplifies the subsequent signal and noise models (i.e., smoothed box-car predictors and white noise). In this paper, we argue that ASL data are best viewed in the same data a...

متن کامل

Quantitative basal CBF and CBF fMRI of rhesus monkeys using three-coil continuous arterial spin labeling.

A three-coil continuous arterial-spin-labeling technique with a separate neck labeling coil was implemented on a Siemens 3T Trio for quantitative cerebral blood flow (CBF) and CBF fMRI measurements in non-human primates (rhesus monkeys). The optimal labeling power was 2 W, labeling efficiency was 92+/-2%, and optimal post-labeling delay was 0.8 s. Gray matter (GM) and white matter (WM) were seg...

متن کامل

Patient-specific detection of perfusion abnormalities combining within-subject and between-subject variances in Arterial Spin Labeling

In this paper, patient-specific perfusion abnormalities in Arterial Spin Labeling (ASL) were identified by comparing a single patient to a group of healthy controls using a mixed-effect hierarchical General Linear Model (GLM). Two approaches are currently in use to solve hierarchical GLMs: (1) the homoscedastic approach assumes homogeneous variances across subjects and (2) the heteroscedastic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance imaging

دوره 28 7  شماره 

صفحات  -

تاریخ انتشار 2010