Hyaluronidases of Bacterial and Animal Origin
نویسندگان
چکیده
Hyaluronidase has been investigated in various strains of pneumococci and hemolytic streptococci, and in some material of animal origin. The enzyme activity was measured by a viscosimetric method using as a substrate a fluid containing hyaluronic acid as the viscous component, and by the hydrolysis of pure hyaluronic acid into its reducing components. In pneumococci the enzyme was demonstrated in all types and in all strains tested, including smooth and rough forms of Types I, II, III, and VI. In hemolytic streptococci the enzyme from strain H44, group A, reported previously, was further investigated. In this strain, as well as in other hemolytic streptococci containing the enzyme, great variability of the enzyme concentration was found. Furthermore, the enzyme proved to be very labile, giving in the viscosimetric measurements a typical stoppage of the activity initially present. In 13 out of 14 other strains of group A organisms investigated, no enzyme was demonstrable, but the variation in activity in the enzyme-active strains renders the negative findings inconclusive. A very active enzyme, though of great variability, was found in one group C strain. The enzyme was prepared from the leech in confirmation of the work of Claude. The enzyme from testis showed a maximum at pH 4.4 in contrast to the optimum of 5.8 in pneumococcal, streptococcal, and Cl. welchii preparations. The pH curve of the testis enzyme indicated, however, a second optimum coinciding with that of the bacterial enzymes. The hydrolysis further indicated a break at about 50 per cent hydrolysis, indicating primarily the hydrolysis down to aldobionic acid units. The depolymerizing action of testis enzyme is more marked than that of pneumococcal enzyme. The results have been interpreted as due to the presence of two enzymes, one attacking the long chain molecule, the other hydrolyzing the aldobionic acid formed. The enzyme was further prepared from beef spleen. Here the hydrolysis of beta-glucuronides was compared to that of hyaluronic acid. The two actions apparently are catalyzed by two distinct enzymes. Enzyme preparations were further obtained from rabbit skin. Since hyaluronic acid has also been found in the skin, this organ may play a considerable rôle in the metabolism of hyaluronic acid. In addition to hyaluronic acid, it has been shown that hyaluronidases also hydrolyze the sulfuric acid containing polysaccharide of the cornea. This polysaccharide has previously been characterized as a natural sulfuric acid ester of hyaluronic acid. The pneumococcal enzyme preparations also attacked a polysaccharide acid prepared from submaxillary gland, which is not hyaluronic acid. However, it is believed that this hydrolysis is due to a second enzyme contained in the preparations. The testis enzyme, on the other hand, attacked chondroitinsulfuric acid and also contained a sulfatase. The depolymerizing action of hyaluronidase has been discussed. It is concluded that depolymerization and hydrolysis are probably due to the same enzyme attacking hyaluronic acid. It is suggested that the first attack of the enzyme does not cause an opening of glucosidic linkages. The available evidence indicates that the viscosity of the natural fluids is not due to macromolecules but to micellae formation, and that these micellae are depolymerized by the enzymatic reaction. It is assumed that the depolymerization is due to a primary enzyme-substrate reaction, which in itself is insufficient to open the glucosidic linkages. The latter reaction involves further steps. The relationship between hyaluronidase and "spreading factor" has been discussed anew. Though more data have been reported pointing to the identity of hyaluronidase and "spreading factor," our inability to demonstrate hyaluronidase in streptococcal material of high "spreading" potency, is still a serious obstacle to the unitarian theory. However, it seems possible that the streptococcal material may contain reversibly inactive enzyme which may be reactivated in vivo.
منابع مشابه
Isolation, Screening and Characterization of Hyaluronidase Producing Bacteria
Hyaluronidase has a panoramic use in biotechnology processes and therapy due to its therapeutic, pathophysiological, physiological and biological importance. Since much of the preparations of hyaluronidases are from animal source (bovine and ovine testicular sources) with limited sources of microbial origin, that prompted the authors to screen and isolate a new promising bacterial strain ...
متن کاملHyaluronidases of Gram-positive bacteria.
Bacterial hyaluronidases, enzymes capable of breaking down hyaluronate, are produced by a number of pathogenic Gram-positive bacteria that initiate infections at the skin or mucosal surfaces. Since reports of the hyaluronidases first appeared, there have been numerous suggestions as to the role of the enzyme in the disease process. Unlike some of the other more well studied virulence factors, m...
متن کاملGroup B Streptococcus Evades Host Immunity by Degrading Hyaluronan.
In response to tissue injury, hyaluronan (HA) polymers are cleaved by host hyaluronidases, generating small fragments that ligate Toll-like receptors (TLRs) to elicit inflammatory responses. Pathogenic bacteria such as group B Streptococcus (GBS) express and secrete hyaluronidases as a mechanism for tissue invasion, but it is not known how this activity relates to immune detection of HA. We fou...
متن کاملThe magic glue hyaluronan and its eraser hyaluronidase: a biological overview.
Hyaluronan (HA) is a multifunctional high molecular weight polysaccharide found throughout the animal kingdom, especially in the extracellular matrix (ECM) of soft connective tissues. HA is thought to participate in many biological processes, and its level is markedly elevated during embryogenesis, cell migration, wound healing, malignant transformation, and tissue turnover. The enzymes that de...
متن کاملDevelopment of a Differential PCR Assay for Detection of Brucella abortus and Brucella melitensis: an Analytical Approach for Monitoring of Brucella spp. in Foods of Animal Origin
Background: Classical bacteriological detection of Brucella species from food, and environment is routinely carried out based on morphological and biochemical characteristics. However, for increasing specificity and sensitivity of species identification methods, development of a molecular assay is necessary that was main aim of this study. Methods: Panel of some reference strains belonging to ...
متن کاملExtracellular virulence factors of streptococci associated with animal diseases.
A virulence factor denotes a bacterial product or strategy that contributes to virulence or pathogenicity. Streptococci produce a variety of protein toxins and enzymes that are capable of killing host cells and breaking down cell constituents, presumably to provide nutrients for the bacteria or to promote their spread. Some of these secreted products are hemolysins, streptokinases, hyaluronidas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 73 شماره
صفحات -
تاریخ انتشار 1941