A model of the oxygen-evolving center of photosystem II predicted by structural refinement based on EXAFS simulations.

نویسندگان

  • Eduardo M Sproviero
  • José A Gascón
  • James P McEvoy
  • Gary W Brudvig
  • Victor S Batista
چکیده

A refined computational structural model of the oxygen-evolving complex (OEC) of photosystem II (PSII) is introduced. The model shows that the cuboidal core Mn3CaO4 with a "dangler" Mn ligated to a corner mu4-oxide ion is maximally consistent with the positioning of the amino acids around the metal cluster as characterized by XRD models and high-resolution spectroscopic data, including polarized EXAFS of oriented single crystals and isotropic EXAFS. It is, therefore, natural to expect that the proposed structural model should be particularly useful to establish the structure of the OEC, consistently with high-resolution spectroscopic data, and for elucidating the mechanism of water-splitting in PSII as described by the intermediate oxidation states of the EC along the catalytic cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simulation of the Isotropic EXAFS Spectra for the S2 and S3 Structures of the Oxygen Evolving Complex in Photosystem II

Most of the main features of water oxidation in photosystem II are now quite well understood, including the mechanism for O-O bond formation. For the intermediate S2 and S3 structures there is also nearly complete agreement between theory and experiments. Given the present high degree of consensus between theory and spectroscopic experiments for these structures, it is of high interest to go ba...

متن کامل

Simulation of the isotropic EXAFS spectra for the S2 and S3 structures of the oxygen evolving complex in photosystem II.

Most of the main features of water oxidation in photosystem II are now well understood, including the mechanism for O-O bond formation. For the intermediate S2 and S3 structures there is also nearly complete agreement between quantum chemical modeling and experiments. Given the present high degree of consensus for these structures, it is of high interest to go back to previous suggestions conce...

متن کامل

The MOD-QM/MM Method: Applications to Studies of Photosystem II and DNA G-Quadruplexes.

Quantum mechanics/molecular mechanics (QM/MM) hybrid methods are currently the most powerful computational tools for studies of structure/function relations and catalytic sites embedded in macrobiomolecules (eg, proteins and nucleic acids). QM/MM methodologies are highly efficient since they implement quantum chemistry methods for modeling only the portion of the system involving bond-breaking/...

متن کامل

Theoretical EXAFS Studies of a Model of the Oxygen-Evolving Complex of Photosystem II Obtained with the Quantum Cluster Approach

The oxygen-evolving complex (OEC) of photosystem II is the only natural system that can form O2 from water and sunlight and it consists of a Mn4Ca cluster. In a series of publications, Siegbahn has developed a model of the OEC with the quantum mechanical (QM) cluster approach that is compatible with available crystal structures, able to form O2 with a reasonable energetic barrier, and has a sig...

متن کامل

Analysis of the radiation-damage-free X-ray structure of photosystem II in light of EXAFS and QM/MM data.

A recent femtosecond X-ray diffraction study produced the first high-resolution structural model of the oxygen-evolving complex of photosystem II that is free of radiation-induced manganese reduction (Protein Data Bank entries 4UB6 and 4UB8 ). We find, however, that the model does not match extended X-ray absorption fine structure and QM/MM data for the S1 state. This is attributed to uncertain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 21  شماره 

صفحات  -

تاریخ انتشار 2008