Neuron synchronization in the rat gracilis nucleus facilitates sensory transmission in the somatosensory pathway.
نویسندگان
چکیده
We have studied the role of the temporal correlation of multiple cell discharges in the facilitation of the somatosensory information transmission from the gracilis nucleus to the primary somatosensory (SI) cortex in anesthetized rats. Pairs of gracilis neurons or gracilis-SI cortical neurons were recorded during application of 20-ms tactile stimuli in control conditions and after electrical corticofugal stimulation. Cross-correlation of neural spike trains showed significant changes in synchronization of the neuron firing provoked by the corticofugal stimulation. To quantify the time-frequency alterations in the functional association within neuron pairs we used the wavelet coherence measure. We show that electrical stimulation of the SI cortex induces a short-lasting facilitation of tactile responses of projecting gracilis neurons if their receptive fields (RFs) overlap with the RF of the stimulated cortical area (matching condition). Moreover, synchronization of discharges of gracilis neurons with a common RF is increased by activation of the corticofugal projection. Synchronization is favored by a stimulus induced synchronous oscillatory activity of projecting neurons in the range 3-10 Hz. In the matching condition synchronous discharges in the gracilis increment the number of spikes elicited in the SI cortex. Thus the efficacy of the sensory transmission from the gracilis nucleus to the SI cortex is modulated by the corticofugal projection through two complementary mechanisms: (i) by changing the responsiveness (number of elicited spikes) of individual gracilis neurons; and (ii) by a dynamic consolidation of gracilis neurons with a common RF into microcircuits generating synchronous spikes.
منابع مشابه
اثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورونهای لایه IV و V قشر بارل (بشکهای) در موش صحرایی
Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...
متن کاملEffect of Specific Lesion of Non Serotonergic Pathway on Neurons of Nucleus Raphe Magnus Morphology in Rat
Purpose: The nucleus raphe magnus (NRM) is a medullary nucleus containing serotonergic and non serotonergic neurons, both of which densely project to spinal cord. The goal of this study was to determine the role of these non serotonergic neurons in pain perception and their cytological changes after the specific lesion of bulbo-spinal serotonergic pathway. Materials and Methods: Male rats were...
متن کاملCortical involvement in the induction, but not expression, of thalamic plasticity.
The present study examined the role of the somatosensory cortex in the plasticity of thalamic sensory maps. Thalamic plasticity was induced by the disruption of hindlimb input by unilateral destruction of nucleus gracilis. Unilateral somatosensory cortex lesions were performed either on the same day as or a week after the removal of hindlimb input. Multiple electrode penetrations enabled us to ...
متن کاملCorticofugal modulation of the tactile response coherence of projecting neurons in the gracilis nucleus.
Precise and reproducible spike timing is one of the alternatives of the sensory stimulus encoding. We test coherence (repeatability) of the response patterns elicited in projecting gracile neurons by tactile stimulation and its modulation provoked by electrical stimulation of the corticofugal feedback from the somatosensory (SI) cortex. To gain the temporal structure we adopt the wavelet-based ...
متن کاملCholinergic modulation of synaptic transmission and postsynaptic excitability in the rat gracilis dorsal column nucleus.
Somatosensory information, conveyed through the gracilis nucleus (GN), is regulated by descending corticofugal (CF) glutamatergic fibers. In addition, the GN receives cholinergic inputs with still unclear source and functional significance. Using both the in vitro slice and intracellular recording with sharp and patch electrodes and in vivo extracellular single-unit recordings, we analyzed the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2009