Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation.
نویسندگان
چکیده
Bone remodeling, comprising resorption of existing bone and de novo bone formation, is required for the maintenance of a constant bone mass. Prostaglandin (PG)E2 promotes both bone resorption and bone formation. By infusing PGE2 to mice lacking each of four PGE receptor (EP) subtypes, we have identified EP4 as the receptor that mediates bone formation in response to this agent. Consistently, bone formation was induced in wild-type mice by infusion of an EP4-selective agonist and not agonists specific for other EP subtypes. In culture of bone marrow cells from wild-type mice, PGE2 induced expression of core-binding factor alpha1 (Runx2/Cbfa1) and enhanced formation of mineralized nodules, both of which were absent in the culture of cells from EP4-deficient mice. Furthermore, administration of the EP4 agonist restored bone mass and strength normally lost in rats subjected to ovariectomy or immobilization. Histomorphometric analysis revealed that the EP4 agonist induced significant increases in the volume of cancellous bone, osteoid formation, and the number of osteoblasts in the affected bone of immobilized rats, indicating that activation of EP4 induces de novo bone formation. In addition, osteoclasts were found on the increased bone surface at a density comparable to that found in the bone of control animals. These results suggest that activation of EP4 induces bone remodeling in vivo and that EP4-selective drugs may be beneficial in humans with osteoporosis.
منابع مشابه
Prostaglandin E receptor EP4 antagonist suppresses osteolysis due to bone metastasis of mouse malignant melanoma cells.
We examined the effects of prostaglandin E (PGE) receptor subtype EP4 antagonist on bone metastasis of cancer to clarify PGE's role in bone metastasis. Metastatic regions were detected in femurs accompanying severe bone loss in mice injected with B16 malignant melanoma cells. Administration of EP4 antagonist restored the bone loss induced by B16 melanoma. Adding B16 cells induced osteoclast for...
متن کاملDeletion of EP4 on bone marrow-derived cells enhances inflammation and angiotensin II-induced abdominal aortic aneurysm formation.
OBJECTIVE To examine whether a lack of prostaglandin E receptor 4 (EP4) on bone marrow-derived cells would increase local inflammation and enhance the formation of abdominal aortic aneurysm (AAA) in vivo. METHODS AND RESULTS Prostaglandin E(2) (PGE(2)) through activation of EP4, can mute inflammation. Hypercholesterolemic low-density lipoprotein receptor knockout (LDLR(-/-)) mice transplanted...
متن کاملImpaired bone resorption by lipopolysaccharide in vivo in mice deficient in the prostaglandin E receptor EP4 subtype.
In a previous study we showed that the involvement of EP4 subtype of the prostaglandin E (PGE) receptor is crucial for lipopolysaccharide (LPS)-induced osteoclast formation in vitro. The present study was undertaken to test whether EP4 is actually associated with LPS-induced bone resorption in vivo. In wild-type (WT) mice, osteoclast formation in vertebrae and tibiae increased 5 days after syst...
متن کاملProstaglandin E(2) regulates murine hematopoietic stem/progenitor cells directly via EP4 receptor and indirectly through mesenchymal progenitor cells.
Prostaglandin E(2) (PGE(2)) regulates hematopoietic stem/progenitor cell (HSPC) activity. However, the receptor(s) responsible for PGE(2) signaling remains unclear. Here, we identified EP4 as a receptor activated by PGE(2) to regulate HSPCs. Knockdown of Ep4 in HSPCs reduced long-term reconstitution capacity, whereas an EP4-selective agonist induced phosphorylation of GSK3β and β-catenin and en...
متن کاملA novel prostaglandin E receptor 4-associated protein participates in antiinflammatory signaling.
Prostaglandin E2 exerts an antiinflammatory action by ligation of the heptahelical receptor EP4 in human macrophages. Because the mechanism by which EP4 receptor stimulation suppresses inflammatory activation in macrophages remains undefined, we sought interactors with the carboxyl-terminal cytoplasmic domain of the EP4 receptor. Yeast 2-hybrid screening of the human bone marrow cDNA library wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 7 شماره
صفحات -
تاریخ انتشار 2002