Lipschitz Behavior of Solutions to Convex Minimization Problems

نویسنده

  • Jean-Pierre Aubin
چکیده

We d e r i v e t h e L i p s c h i t z dependence of t h e s e t of s o l u t i o n s of a convex minimizat ion problem and i t s Lagrange m u l t i p l i e r s upon t h e n a t u r a l parameters from an Inve r se Funct ion Theorem f o r se t -valued maps. Th i s r e q u i r e s t h e use of con t ingen t and Clarke d e r i v a t i v e s of se t -valued maps, a s w e l l a s gene ra l i zed second d e r i v a t i v e s of convex func t ions . LIPSCHITZ BEHAVIOR OF SOLUTIONS TO CONVEX M I N I M I Z A T I O N PROBLEMS Jean -P ie r r e Aubin

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems

Abstract. We propose a prox-type method with efficiency estimate O(2−1) for approximating saddle points of convex-concave C1,1 functions and solutions of variational inequalities with monotone Lipschitz continuous operators. Application examples include matrix games, eigenvalue minimization and computing Lovasz capacity number of a graph and are illustrated by numerical experiments with large-s...

متن کامل

Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

Empirical risk minimization (ERM) is recognized as a special form in standard convex optimization. When using a first order method, the Lipschitz constant of the empirical risk plays a crucial role in the convergence analysis and stepsize strategies for these problems. We derive the probabilistic bounds for such Lipschitz constants using random matrix theory. We show that, on average, the Lipsc...

متن کامل

Smoothing methods for nonsmooth, nonconvex minimization

We consider a class of smoothing methods for minimization problems where the feasible set is convex but the objective function is not convex, not differentiable and perhaps not even locally Lipschitz at the solutions. Such optimization problems arise from wide applications including image restoration, signal reconstruction, variable selection, optimal control, stochastic equilibrium and spheric...

متن کامل

A scalarization proximal point method for quasiconvex multiobjective minimization

In this paper we propose a scalarization proximal point method to solve multiobjective unconstrained minimization problems with locally Lipschitz and quasiconvex vector functions. We prove, under natural assumptions, that the sequence generated by the method is well defined and converges globally to a Pareto-Clarke critical point. Our method may be seen as an extension, for the non convex case,...

متن کامل

Generalization of ERM in Stochastic Convex Optimization: The Dimension Strikes Back

In stochastic convex optimization the goal is to minimize a convex function F (x) . = Ef∼D[f(x)] over a convex set K ⊂ R where D is some unknown distribution and each f(·) in the support of D is convex over K. The optimization is commonly based on i.i.d. samples f, f, . . . , f from D. A standard approach to such problems is empirical risk minimization (ERM) that optimizes FS(x) . = 1 n ∑ i≤n f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1984