TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility.

نویسندگان

  • William F Hawse
  • Soumya De
  • Alex I Greenwood
  • Linda K Nicholson
  • Jaroslav Zajicek
  • Evgenii L Kovrigin
  • David M Kranz
  • K Christopher Garcia
  • Brian M Baker
چکیده

Although conformational changes in TCRs and peptide Ags presented by MHC protein (pMHC) molecules often occur upon binding, their relationship to intrinsic flexibility and role in ligand selectivity are poorly understood. In this study, we used nuclear magnetic resonance to study TCR-pMHC binding, examining recognition of the QL9/H-2L(d) complex by the 2C TCR. Although the majority of the CDR loops of the 2C TCR rigidify upon binding, the CDR3β loop remains mobile within the TCR-pMHC interface. Remarkably, the region of the QL9 peptide that interfaces with CDR3β is also mobile in the free pMHC and in the TCR-pMHC complex. Determination of conformational exchange kinetics revealed that the motions of CDR3β and QL9 are closely matched. The matching of conformational exchange in the free proteins and its persistence in the complex enhances the thermodynamic and kinetic stability of the TCR-pMHC complex and provides a mechanism for facile binding. We thus propose that matching of structural fluctuations is a component of how TCRs scan among potential ligands for those that can bind with sufficient stability to enable T cell signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a common docking topology with substantial variation among different TCR–peptide–MHC complexes

Whether T-cell receptors (TCRs) recognize antigenic peptides bound to major histocompatability complex (MHC) molecules through common or distinct docking modes is currently uncertain. We report the crystal structure of a complex between the murine N15 TCR [1-4] and its peptide-MHC ligand, an octapeptide fragment representing amino acids 52-59 of the vesicular stomatitis virus nuclear capsid pro...

متن کامل

T-cell Receptor (TCR)-Peptide Specificity Overrides Affinity-enhancing TCR-Major Histocompatibility Complex Interactions*

αβ T-cell receptors (TCRs) engage antigens using complementarity-determining region (CDR) loops that are either germ line-encoded (CDR1 and CDR2) or somatically rearranged (CDR3). TCR ligands compose a presentation platform (major histocompatibility complex (MHC)) and a variable antigenic component consisting of a short "foreign" peptide. The sequence of events when the TCR engages its peptide-...

متن کامل

How a Single T Cell Receptor Recognizes Both Self and Foreign MHC

alphabeta T cell receptors (TCRs) can crossreact with both self- and foreign- major histocompatibility complex (MHC) proteins in an enigmatic phenomenon termed alloreactivity. Here we present the 2.35 A structure of the 2C TCR complexed with its foreign ligand H-2L(d)-QL9. Surprisingly, we find that this TCR utilizes a different strategy to engage the foreign pMHC in comparison to the manner in...

متن کامل

Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands

T cells recognize short linear peptides bound to major histocompatibility complex (MHC)-encoded molecules. Subtle molecular changes in peptide antigens produce altered peptide ligands (APLs), which induce different T cell responses from those induced by the antigenic ligand. A molecular basis for how these slight molecular variations lead to such different consequences for the T cell has not be...

متن کامل

Viral escape at the molecular level explained by quantitative T-cell receptor/peptide/MHC interactions and the crystal structure of a peptide/MHC complex.

Viral escape, first characterized for the lymphocytic choriomeningitis virus (LCMV) in a mouse transgenic for the P14 T cell-receptor (TCR), can be due to mutations in T-cell epitopes. We have measured the affinity between the H-2D(b) containing the wild-type and two of its "viral escape" epitopes, as well as other altered peptide ligands (APL), by using BIACORE analysis, and solved the crystal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 192 6  شماره 

صفحات  -

تاریخ انتشار 2014