Explaining the structure of the Archean mass-independent sulfur isotope record.
نویسندگان
چکیده
Sulfur isotopes in ancient sediments provide a record of past environmental conditions. The long-time-scale variability and apparent asymmetry in the magnitude of minor sulfur isotope fractionation in Archean sediments remain unexplained. Using an integrated biogeochemical model of the Archean sulfur cycle, we find that the preservation of mass-independent sulfur is influenced by a variety of extra-atmospheric mechanisms, including biological activity and continental crust formation. Preservation of atmospherically produced mass-independent sulfur implies limited metabolic sulfur cycling before approximately 2500 million years ago; the asymmetry in the record indicates that bacterial sulfate reduction was geochemically unimportant at this time. Our results suggest that the large-scale structure of the record reflects variability in the oxidation state of volcanic sulfur volatiles.
منابع مشابه
Exploring the Contributions of Liquid - Phase Sulfur Chemistry to the Mass - Independent Sulfur Fractionation of the Archean Rock Record by MASSACH OFT Sebastian Hermann Kopf
Archean sulfur mass-independent fractionation (S-MIF) has been widely recognized as one of the strongest indicators for the rise of atmospheric oxygen in the Early Proterozoic. A decade after its discovery, the wide-ranging implications of Archean sulfur MIF have been discussed extensively and despite a number of recent studies on the gas-phase chemistry of sulfur, no definite overall picture h...
متن کاملMass-independent sulfur isotope fractionation during photochemistry of sulfur dioxide
Mass-independent sulfur isotope signatures are observed in Archean and early Paleoproterozoic sedimentary sulfate and sulfide minerals, and provide the most robust constraints on early atmospheric oxygen levels. Smaller mass-independent sulfur isotope anomalies are observed in ice cores and interpreted as a tracer of stratospheric volcanic loading. Photochemistry of sulfur dioxide (SO 2) has be...
متن کاملMass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis
We report sulfur isotope anomalies with S, the deviation from a mass-dependent fractionation line for the three-isotope system (S/S vs. S/S), ranging up to 2‰ within individual Archean sedimentary sulfides from a variety of localities. Our measurements, which are made in situ by multicollector secondary ion mass spectrometry, unequivocally corroborate prior bulk measurements of mass-independent...
متن کاملAtmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec).
Mass-independent fractionation of sulfur isotopes (S-MIF) results from photochemical reactions involving short-wavelength UV light. The presence of these anomalies in Archean sediments [(4-2.5 billion years ago, (Ga)] implies that the early atmosphere was free of the appropriate UV absorbers, of which ozone is the most important in the modern atmosphere. Consequently, S-MIF is considered some o...
متن کاملMass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth.
Populations of sulfide inclusions in diamonds from the Orapa kimberlite pipe in the Kaapvaal-Zimbabwe craton, Botswana, preserve mass-independent sulfur isotope fractionations. The data indicate that material was transferred from the atmosphere to the mantle in the Archean. The data also imply that sulfur is not well mixed in the diamond source regions, allowing for reconstruction of the Archea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 329 5988 شماره
صفحات -
تاریخ انتشار 2010