Extreme sensitive dependence on parameters and initial conditions in spatio-temporal chaotic dynamical systems
نویسندگان
چکیده
We investigate the sensitive dependence of asymptotic attractors on both initial conditions and parameters in spatio-temporal chaotic dynamical systems. Our models of spatio-temporal systems are globally coupled two-dimensional maps and locally coupled ordinary differential equations. It is found that extreme sensitive dependence occurs commonly in both phase space and parameter space of these systems. That is, for an initial condition and/or a parameter value that leads to chaotic attractors, there are initial conditions and/or parameter values arbitrarily nearby that lead to nonchaotic attractors. This indicates the occurrence of an extreme type of fractal structure in both phase space and parameter space. A scaling exponent used to characterize extreme sensitive dependence on initial conditions and parameters is determined to be near zero in both phase space and parameter space. Accordingly, there is a significant probability of error in numerical computations intended to determine asymptotic attractors, regardless of the precision with which initial conditions or parameters are specified. Consequently, fundamental statistical properties of asymptotic attractors cannot be computed reliably for particular parameter values and initial conditions.
منابع مشابه
An updated version of the paper in Nonlinearity 6, (1993), 1067–1075. SENSITIVE DEPENDENCE ON INITIAL CONDITIONS
It is shown that the property of sensitive dependence on initial conditions in the sense of Guckenheimer, follows from the other two more technical parts of one of the most common recent definitions of chaotic systems. It follows that this definition applies to a broad range of dynamical systems, many of which should not be considered chaotic. We investigate the implications of sensitive depend...
متن کاملQuantification of the spatial aspect of chaotic dynamics in biological and chemical systems.
The need to study spatio-temporal chaos in a spatially extended dynamical system which exhibits not only irregular, initial-value sensitive temporal behavior but also the formation of irregular spatial patterns, has increasingly been recognized in biological science. While the temporal aspect of chaotic dynamics is usually characterized by the dominant Lyapunov exponent, the spatial aspect can ...
متن کاملاستفاده از POD در استخراج ساختارهای متجانس یک میدان آشفته آماری- همگن
Capability of the Proper Orthogonal Decomposition (POD) method in extraction of the coherent structures from a spatio-temporal chaotic field is assessed in this paper. As the chaotic field, an ensemble of 40 snapshots, obtained from Direct Numerical Simulation (DNS) of the Kuramoto-Sivashinsky (KS) equation, has been used. Contrary to the usual methods, where the ergodicity of the field is need...
متن کاملCONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملA Study of Pedestrian Movement on Crosswalks Based on Chaos Theory
Walking, as an important transportation mode, plays a large part in urban transportation systems. This mode is of great importance for planners and decision-makers because of its impact on environmental and health aspects of communities. However, this mode is so complex in nature that makes it difficult to study or model. On the other hand, chaos theory studies complex dynamical nonlinear syste...
متن کامل