In vitro colocalization of plasmonic nano-biolabels and biomolecules using plasmonic and Raman scattering microspectroscopy.

نویسندگان

  • Kamalesh Chaudhari
  • Thalappil Pradeep
چکیده

An insight into the intracellular fate of theranostics is important for improving their potential in biological applications. In vivo efficacy of plasmonic theranostics depends on our ability to monitor temporal changes in their size, shape, and state of aggregation, and the identification of molecules adsorbed on their surfaces. We develop a technique which combines plasmonic and Raman scattering microspectroscopy to colocalize plasmonic scattering from metallic nanoparticles with the Raman signatures of biomolecules adsorbed on the surface of the former. Using this technique, we have colocalized biomolecules with the plasmonic scattering from silver nanoparticles in the vicinity of Escherichia coli bacteria. To prove the applicability of this setup for the measurements on mammalian cells, imaging of HEK293 cells treated with gold nanoparticles was performed. We discuss the importance of such correlated measurements over individual techniques, although the latter may lead to misinterpretation of results. Finally, with the above-mentioned examples, we have given criteria to improve the specificity of theranostics. We believe that this methodology will be considered as a prime development in the assessment of theranostics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations

In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...

متن کامل

Tunable Plasmonic Nanoparticles Based on Prolate Spheroids

Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...

متن کامل

Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection

Plasmonic nanomaterials (P-NM) are receiving attention due to their excellent properties, which include surface-enhanced Raman scattering (SERS), localized surface plasmon resonance (LSPR) effects, plasmonic resonance energy transfer (PRET), and magneto optical (MO) effects. To obtain such plasmonic properties, many nanomaterials have been developed, including metal nanoparticles (MNP), bimetal...

متن کامل

Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.

Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper review...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2015