Adams Operations for Bivariant K-theory and a Ltration Using Projective Lines
نویسنده
چکیده
We establish the existence of Adams operations on the members of a ltration of K-theory which is deened using products of projective lines. We also show that this ltration induces the gamma ltration on the rational K-groups of a smooth variety over a eld of characteristic zero.
منابع مشابه
Adams operations for bivariant K-theory and a filtration using projective lines
We establish the existence of Adams operations on the members of a filtration of K-theory which is defined using products of projective lines. We also show that this filtration induces the gamma filtration on the rational K-groups of a smooth variety over a field of characteristic zero.
متن کاملA general construction of partial Grothendieck transformations
Fulton and MacPherson introduced the notion of bivariant theories related to Riemann-Roch-theorems, especially in the context of singular spaces. This is powerful formalism, which is a simultaneous generalization of a pair of contravariant and covariant theories. Natural transformations of bivariant theories are called Grothendieck transformations, and these generalize a pair of ordinary natura...
متن کاملRings of Singularities
This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...
متن کامل, Duality and D - Branes in Bivariant K - Theory
We describe a categorical framework for the classification of D-branes on noncommutative spaces using techniques from bivariant K-theory of C∗-algebras. We present a new description of bivariant K-theory in terms of noncommutative correspondences which is nicely adapted to the study of T-duality in open string theory. We systematically use the diagram calculus for bivariant K-theory as detailed...
متن کاملK-theory and Absolute Cohomology for Algebraic Stacks
In this paper we consider the K-theory of smooth algebraic stacks, establish λ and Adams operations and show that the higher K-theory of such stacks is always a pre-λ-ring and is a λ-ring if every coherent sheaf is the quotient of a vector bundle. As a consequence we are able to define Adams operations and absolute cohomology for smooth algebraic stacks satisfying this hypothesis. We also defin...
متن کامل